Bài 1. Cho tam giác ABC cân tại A. Trên BC lấy M bất kì sao cho BM < CM. Từ M vẽ đường thẳng song song với AC cắt AB tại E và song song với AB cắt AC tại F. Gọi N là điểm đối xứng của M qua EF.
a) Chứng minh: AEMF là hình thang cân.
b) Tính góc ANB + góc ACB = ?
c) M ở vị trí nào để tứ giác AEMF là hình thoi và cần thêm điều kiện của ΔABC để AEMF là hình vuông
Bài 2. Cho Δ nhọn ABC có trực tâm H. Các đường cao AD, BE, CK. Chứng minh rằng:
SΔAKE/AH2 = SΔDBK/HB2 = SΔCDE/CH2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác AFME có :
AE // FM (Gt)
EM // AF (gt)
=> AFME là hình bình hành (đn)
=> AE = MF và EM = AF (tc)
=> Chu vi AEMF = 2AE + 2EM = 2(AE + EM) (1)
EM // AC (Gt) mà ^EMB đồng vị ^ACB
=> ^EMB = ^ACB (đl)
^ABC = ^ACB do tam giác ABC cân tại A (gt)
=> ^EMB = ^ABC
=> tam giác EMB cân tại E (dh)
=> EM = EB (đn) và (1)
=> Chu vi AEMF = 2(AE + EB)
AE + EB = AB
=> Chu vi AEMF = 2AB
AB = 7 cm (Gt)
=> chu vi AEMF = 2.7 = 14
b, gọi EF cắt MN tại P
kẻ AQ _|_ EF
xét tam giác EPN và tam giác EPM có : EP chung
^EPN = ^EPM = 90
PM = PN do M đx với N qua EF
=> tam giác EPN = tam giác EPM (2cgv)
=> NE = EM (2)
và ^NEP = ^MEP (đn)
^NEP + ^NEF = 180 (kb)
^MEP + ^MEF = 180 (kb)
=> ^NEF = ^MEF
^MEF = ^EFA (slt MF // AE)
=> ^NEF = ^AFE (3)
^NEF + ^NEP = 180 (kb)
^AFE + ^AFQ = 180 (kb)
=> ^NEP = ^AFQ
AF =EM do AEFM là hbh và (2) => NE = EF
xét tam giác NEP và tam giác AFQ có : ^NPE = ^AQF = 90
=> tam giác NEP = tam giác AFQ (ch-gn)
=> NP = AQ
NP _|_ EF; AQ _|_ AF (cv) => NP // AQ
=> NAQP là hbh
=> NA // EF và (3)
=> NEFA là hình thang cân
c, có NEA là góc ngoài của tam giác NEB => ^NEA = ^ENB + ^EBN
NE = EM (Câu b); EB = EM (câu a) => EN = EB => tam giác ENB câ tại E (đn) => ^ENB = ^EBN
=> ^NEA = 2^EBN
tương tự với góc EAM là góc ngoài của tam giác EBM => ^EAM = 2^EBM
=> ^NEA + ^EAM = 2(^EBN + ^EBM)
=> ^NEM = 2^NBM => ^NBM = ^NEM : 2
có : ^NEF + ^MEF = ^NEM mà ^NEF = ^MEF (câu b) => ^NEF = ^NEM : 2
=> ^NBM = ^NEF
^NBM = ^ABC + ^ABN
^ABC = ^ACB ; ^ABN = ^ENB
=> ^NEF = ^C + ^ENB
^ANE + ^NEF = 180 (tcp)
=> ^ANE + ^ENB + ^C = 180
=> ^BNA + ^C = 180
d, CHƯA NGHĨ RA
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
mà \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
a: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)