Giá trị của biểu thức 1^2−2^2+3^2−4^2+5^2−6^2+....+99^2−100^2+101^2
HELP ME!!!HELP HELP ME ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+3+5+....+99-2-4-...-100=(1+99)x((99-1):2+1):2-(2+4+...+100)=100x50:2-((2+100)x((100-2):2+1):2)
=2500-(102x50:2)=2500-2550=-50
em chịu khó gõ link này lên google nhé em !
https://olm.vn/hoi-dap/detail/97680351557.html
học tốt nha
D=12-22+32-42+...+992-1002+1012
D = - (-12 + 22 - 32 + 42 - ... - 992 + 1002) + 1012
D = -[(22 - 12) + (42 - 32) + ... + (1002 - 992)] + 1012
D = -[(2 + 1)(2 - 1) + (4 + 3)(4 - 3) + ... + (100 + 99)(100 - 99)] + 1012
D = -[1 + 2 + 3 + 4 + ... + 99 + 100] + 1012
D = \(-\frac{\left(1+100\right).100}{2}+101^2\)
D = -5050 + 10201
D = 5151
S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))
S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)
Vì em lớp 6 nên phải làm thêm bước này nữa:
Ta có
n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)
Áp dụng công thức vừa chứng minh trên vào tổng S ta có:
S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)
S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)
S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)
S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)
S = \(\dfrac{51}{100}\)
\(A=1+2-3-4+5+6-7-8+....+97+98-99-100\\ \Rightarrow A=\left(1=2-3-4\right)+\left(5+6-7-8\right)+......+\left(97+98-99-100\right)\)
\(\Rightarrow A=-4+\left(-4\right)+....+\left(-4\right)\\ \Rightarrow A=-4.25=-100\)
\(\dfrac{4^5\cdot10\cdot5^6+25^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{\left(2^2\right)^5\cdot2\cdot5\cdot5^6+\left(5^2\right)^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{10}\cdot2\cdot5\cdot5^6+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{11}\cdot5^7+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^8\cdot5^7\left(2^3+5^3\right)}{2^5\cdot5^4\left(2^3+5^3\right)}\\ =\dfrac{2^8\cdot5^7}{2^5\cdot5^4}\\ =2^3\cdot5^3\\ =8\cdot125\\ =1000\)
Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:
$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$
Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$
$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$
Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$
\(P=sin^22x-\left[2sin\dfrac{x}{2}cos\dfrac{x}{2}\left(cos^4\dfrac{x}{2}-sin^4\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx\left(cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\right)\left(cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx.cosx.1\right]^2\)
\(=sin^22x-\left[\dfrac{1}{2}sin2x\right]^2\)
\(=\dfrac{3}{4}sin^22x=\dfrac{3}{4}\left(1-cos^22x\right)=\dfrac{3}{4}\left(1-\dfrac{1}{4}\right)=\dfrac{9}{16}\)