Chứng minh:
\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+....+\frac{9}{100!}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé
\(a)\)Đặt \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm )
Vậy \(A< 1\)
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}
\(\frac{9}{10!}+\frac{10}{11!}+...+\frac{999}{1000!}\)
\(=\frac{10-1}{10!}+\frac{11-1}{11!}+...+\frac{1000-1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)
đpcm
Tham khảo nhé~
Ta có :
\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{100!}\)
\(B=9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{100!}\right)< 9\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\right)\)
\(B< 9\left(\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(B< 9\left(\frac{1}{9}-\frac{1}{100}\right)=1-\frac{9}{100}< 1\) ( đpcm )
Vậy \(B< 1\)
Chúc bạn học tốt ~
Xin lỗi đoạn cuối mình nhìn nhầm bài >_<