K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)

27 tháng 7 2017

sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)

7 tháng 3 2018

Ta có : 

\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{100!}\)

\(B=9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{100!}\right)< 9\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\right)\)

\(B< 9\left(\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(B< 9\left(\frac{1}{9}-\frac{1}{100}\right)=1-\frac{9}{100}< 1\) ( đpcm ) 

Vậy \(B< 1\)

Chúc bạn học tốt ~

7 tháng 3 2018

Xin lỗi đoạn cuối mình nhìn nhầm bài >_< 

13 tháng 8 2015

a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}

7 tháng 5 2016

Ta đặt biểu thức đã cho là A

suy ra A < (10-1)/10! + (11-1)/11! +...+ (1000-1)/1000!

=> A < 10/10! - 1/10! + 11/11! - 1/11! +...+ 1000/1000! - 1/1000!

=> A < 1/9! - 1/10! + 1/10! - 1/11! +...+ 1/999! - 1/1000!

=> A < 1/9! - 1/1000! < 1/9!

Vậy A < 1/9!

Chúc bạn hoc tốt

18 tháng 3 2017

Ta có :

\(\frac{1}{10}>\frac{1}{20}\)

\(\frac{1}{11}>\frac{1}{20}\)

\(\frac{1}{12}>\frac{1}{20}\)     \(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(1)

.....

\(\frac{1}{19}>\frac{1}{20}\)

Ta có :

\(\frac{1}{20}>\frac{1}{30}\)

\(\frac{1}{21}>\frac{1}{30}\)

\(\frac{1}{22}>\frac{1}{30}\)      \(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)(2) 

........

\(\frac{1}{29}>\frac{1}{30}\)

Ta có :

\(\frac{1}{30}>\frac{1}{40}\)

\(\frac{1}{31}>\frac{1}{40}\)                \(\Rightarrow\frac{1}{30}+\frac{1}{31}+....+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)(3)

.........

\(\frac{1}{39}>\frac{1}{40}\)

Từ 1 , 2 , 3 ,

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

=> ....... > 1 

18 tháng 3 2017

1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2 
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3 
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4 
\(\Rightarrow\)1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1