K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

Gọi d là ƯCLN( 2n+3;3n+4)

=> 2n+3 chia hết cho d và 3n+4 chia hết cho d

=> (2n+3) - (3n+4) chia hết cho d

=> 3(2n+3) - 2(3n+4) chia hết cho d

=> (6n+9) - (6n+8) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN(2n+3; 3n+4) = 1

Vậy  2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau

26 tháng 1 2017

Các bn trả lời nhanh giùm mình nha.

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

9 tháng 12 2015

Gọi  d = (A=3n+5 ;B=2n+3) => A ; B chia hết cho d

=> 2A -3B = 2(3n+5) - 3(2n+3) = 6n  +10 - 6n -9  =1 chia hết cho d

=> d =1

Vậy (A;B) =1

9 tháng 12 2015

chung mik la mih ngu nhatv 

23 tháng 12 2018

gọi uoc chung cua 3n + 4 va 4n+5 là x

ta co

3n+4chia het cho x suy ra 12n+16 chia het cho x

4n+5 chia het cho x suy ra 12n+15 chia het cho x

suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1

vay 4n+5 và 3n+4 nguyen to cung nhau

23 tháng 12 2018

Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)

suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.

Xét 3n+4 chia hết cho d

suy ra 4(3n+4) chia hết cho d

    hay 12n+16 chia hết cho d (1)

4n+5chia hết cho d

suy ra 3(4n+5) chia hết cho d

 hay 12n+15 chia hết cho d (2)

(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.

                                                   1 chia hết cho d

                                suy ra d=1  

 suy ra ƯCLN(3n+4,4n+5)=1

  Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

26 tháng 12 2021

b) gọi d = ƯCLN(2n + 3; 3n + 5)

--> 3(2n + 3) và 2(3n + 5) chia hết cho d

--> (6n + 10) - (6n + 9) chia hết cho d

--> 1 chia hết cho d

--> d = 1

--> 2n + 3 và 3n + 5 nguyên tố cùng nhau

26 tháng 12 2021

a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp

nên n+2 và n+3 là hai số nguyên tố cùng nhau

2 tháng 12 2015

gọi d là UCLN ( 3n+5, 2n+3 )

=>3n+5 chia hết cho d

=>2n+3 chia hết cho d

=>2.(3n+5) chia hết cho d

=>3.(2n+3) chia hết cho d

=>6n+10 chia hết cho d

=>6n+9 chia hết cho d

=>6n+10-(6n+9) = d

=>6n+10-6n-9 =d

=>      1         = d

=> 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

9 tháng 11 2016

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

9 tháng 11 2016

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự.