giúp mình bài này
tìm nghiệm của đa thức f(x) = x2+2x+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Ta có: (x + 2) (x - 1) = 0
➩ x + 2 = 0 và x - 1 = 0
x = -2 x = 1
Vậy x = -2 và x = 1 là nghiệm của đa thức f(x)
Vì f(-2) = 0; f(1) = 0
\(x.x-2x+1=x^2-2x+1\)
Đặt \(x^2-2x+1=0\)
\(\Rightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Vậy \(x=1\) là nghiệm của đa thức
a, 2x^2 + 5x = 0
=> x(2x + 5) = 0
=> x = 0 hoặc 2x + 5 = 0
=> x = 0 hoặc x = -5/2
b. x^2 - 1 = 0
=> (x - 1)(x + 1) = 0
=> x - 1 = 0 hoặc x + 1 = 0
=> x = 1 hoặc x - -1
Ta có:
\(\Delta'=1-9=-8< 0\)
Vậy phương trình vô nghiệm
hay đa thức f(x) vô nghiệm