Có hay không 1 đa thức P(x) hệ số nguyên thỏa mãn P(26) =1931 và P(3) =2013?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta suy ra \(P\left(x\right)=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)+2013\).
Do đó \(P\left(x\right)-2014=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)-1\).
Giả sử đa thức \(P\left(x\right)-2014\) có một nghiệm nguyên x = a. Khi đó ta có: \(\left(a-2012\right)\left(a-2013\right)\left(a-2014\right).f\left(a\right)-1=0\).
Điều trên vô lí vì vế trái chia cho 3 dư 2, trong khi đó vế phải chia hết cho 3.
Vậy ta có đpcm.
- Gỉa sử a là nghiệm nguyên của P(X) .
- Khi đó P(x) có dạng : \(P_{\left(x\right)}=\left(x-a\right)g\left(x\right)\)
- Theo bài ra ta có : \(P\left(x\right)=\left(2-a\right)\left(3-a\right)\left(4-a\right)g\left(2\right)g\left(3\right)g\left(4\right)=154\)
Thấy : \(\left(2-a\right)\left(3-a\right)\left(4-a\right)⋮3\forall a\in Z\)
Mà \(154⋮̸3\)
Vậy đa thức P(x) không có nghiệm nguyên .
Bạn kiểm tra đề có vấn đề gì không nhé.
Vì ta có đa thức \(P\left(x\right)\)có hệ số nguyên thì \(\left[P\left(a\right)-P\left(b\right)\right]⋮\left(a-b\right)\).
Ta có: \(2021=1.2021=43.47\)
\(20-11=9\Rightarrow P\left(20\right)-P\left(11\right)⋮9\)
Do là đa thức có hệ số nguyên nên \(P\left(20\right),P\left(11\right)\)đều là số nguyên.
Ta thử các trường hợp của \(P\left(20\right)\)và \(P\left(11\right)\) đều không có trường hợp nào thỏa mãn \(P\left(20\right)-P\left(11\right)⋮9\).
đây là câu hỏi nâng cao chứ chắc ko sai đây ạ
mình đang cần làm cái cmr ý ạ