chứng minh rằng tổng hoặc hiệu của một số tự nhiên với một phân số tối giản là một phân số tối giản
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VH
0
DT
0
NT
0
HN
0
NM
0
AH
Akai Haruma
Giáo viên
5 tháng 2 2024
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
AH
Akai Haruma
Giáo viên
5 tháng 2 2024
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
PN
2
NM
Nguyễn Minh Quang
Giáo viên
13 tháng 3 2021
xét phân số tối giản đó là \(\frac{p}{q}\)
Do đó \(\left(p,q\right)=1\)
nên \(\left(p+q,q\right)=1\Rightarrow\frac{p+q}{q}=\frac{p}{q}+1\) là phân số tối giản