trong cac tam giác abc co bc bang a , goc bac bang alpha .tam giac nào có chu vi lớn hơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề: 1/2 số đo góc A băng 2/3 số đo góc B và bằng số đo góc C
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2.\widehat{B}}{3}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}\)
Mặt khác tỏng số đo 3 góc trong của tam giác bằng 180o => A+B+C=180o
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^o}{9}=20^o\)
khi đó góc A=80o; B=60o;C=40o
Vì tổng số đo ba góc A, B, C của \(\Delta ABC\)là 180o (Theo định lí tổng ba góc của một tam)
nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)
Vì \(\Delta ABC\) có \(\frac{1}{2}\)số đo góc A bằng \(\frac{2}{3}\)số đo góc B bằng số đo góc C
nên \(\frac{1}{2}\widehat{A}=\frac{2}{3}\widehat{B}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2\widehat{B}}{3}=\widehat{\frac{C}{1}}\)
\(\Rightarrow\frac{\widehat{A}}{2}\cdot\frac{1}{2}=\frac{2\widehat{B}}{3}\cdot\frac{1}{2}=\widehat{\frac{C}{1}}\cdot\frac{1}{2}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}\)
Áp dụng t/c của dãy TSBN ta có:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^O}{9}=20^O\)
Suy ra: \(\widehat{A}=20^o\cdot4=80^o\)
\(\widehat{B}=20^o\cdot3=60^o\)
\(\widehat{C}=20^o\cdot2=40^o\)
Vậy số đo các góc A, B, C của \(\Delta ABC\) lần lượt là 80o, 60o, 40o
AB= AC( 2 cạnh bên của tam giác ABC cân tại A)
=> 1/2 AB = 1/2 AC
=> MB = MC
xét tam giác MBC và tam giác NCB
có : BC chung
góc MBC= góc NCB
MB = NC
Vậy tam giác MBC bằng tam giác NCB
B)vì BM và CN đều là trung tuyến và đề cắt nhau tại I => I là trọng tâm
=> AI là trung tuyến
Tam giác ABC cân tại A có AI là trung tuyến
=> AI là phân giác của góc BAC
C) => AI vuông góc BC