K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

Vì tổng số đo ba góc A, B, C của \(\Delta ABC\)là 180o (Theo định lí tổng ba góc của một tam)

            nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)

Vì \(\Delta ABC\) có \(\frac{1}{2}\)số đo góc A bằng \(\frac{2}{3}\)số đo góc B bằng số đo góc C

      nên \(\frac{1}{2}\widehat{A}=\frac{2}{3}\widehat{B}=\widehat{C}\)

       \(\Rightarrow\frac{\widehat{A}}{2}=\frac{2\widehat{B}}{3}=\widehat{\frac{C}{1}}\)

       \(\Rightarrow\frac{\widehat{A}}{2}\cdot\frac{1}{2}=\frac{2\widehat{B}}{3}\cdot\frac{1}{2}=\widehat{\frac{C}{1}}\cdot\frac{1}{2}\)

       \(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}\) 

Áp dụng t/c của dãy TSBN ta có:

   \(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^O}{9}=20^O\) 

Suy ra: \(\widehat{A}=20^o\cdot4=80^o\)

            \(\widehat{B}=20^o\cdot3=60^o\)

           \(\widehat{C}=20^o\cdot2=40^o\)

Vậy số đo các góc A, B, C của \(\Delta ABC\) lần lượt là 80o, 60o, 40o

22 tháng 11 2018

Theo đề: 1/2 số đo góc A băng 2/3 số đo góc B và bằng số đo góc C

\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2.\widehat{B}}{3}=\widehat{C}\)

\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}\)

Mặt khác tỏng số đo 3 góc trong của tam giác bằng 180o => A+B+C=180o

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^o}{9}=20^o\)

khi đó góc A=80o; B=60o;C=40o

22 tháng 11 2018

Thanks bạn!!

a: Số đo góc ở đỉnh là \(180^0-2\cdot50^0=80^0\)

b: Số đo góc ở đáy là \(\dfrac{180^0-70^0}{2}=55^0\)

c: Vì ΔABC cân tại A

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)

19 tháng 2 2018

A B C I
a) Gọi \(\widehat{ABI}=\widehat{IBC}=y\);\(\widehat{ACI}=\widehat{ICB}=x\)
Xét tam giác ABC ta có:
\(\widehat{CAB}+\widehat{ACB}+\widehat{CBA}=180^o\)\(\Rightarrow\widehat{ACB}=2x;\widehat{ABC}=2y\)
\(\Leftrightarrow60^o+2y+2x=180^o\)
\(\Leftrightarrow2x+2y=120^o\)
\(\Leftrightarrow x+y=60^o\)(1)
Do \(\widehat{ABC}=2\widehat{ACB}\Rightarrow2y=2.2x\Leftrightarrow y=2x\)(2)
Từ (1) và (2) suy ra \(x=20^o;y=40^o\)
Vậy \(\widehat{ACB}=2x=40^o\)
b)Xét tam giác BIC ta có:
\(\widehat{BIC}+\widehat{ICB}+\widehat{IBC}=180^o\)
\(\Leftrightarrow\widehat{BIC}+20^o+40^o=180^o\)
\(\Leftrightarrow\widehat{BIC}=120^o\)
 

19 tháng 2 2018

cac ban giup minh nha

12 tháng 11 2021

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{5}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\dfrac{180^0}{12}=15^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=45^0\\\widehat{B}=60^0\\\widehat{C}=75^0\end{matrix}\right.\)

12 tháng 11 2021

gọi số đo các góc ˆ A , ˆ B , ˆ C lần lượt là x,y,z

theo đề ta có: x : y : z = 3 : 4 : 5

⇒ x/3 = y/4 = z/5 ; x + y + z = 180 độ 

Áp dụng tính chất của dãy tỉ số bằng nhau

ta có: \(\dfrac{x+y+z}{3+4+5}\)= \(\dfrac{180}{12}\)= 15

\(\dfrac{x}{3}\)= 15 ⇒ x = 15.3 = 45 ⇒ x = 45

\(\dfrac{y}{4}\) = 15 ⇒ y = 15.4 = 60 ⇒ y = 60

\(\dfrac{z}{5}\) = 15 ⇒ z = 15.5 = 75 ⇒ z = 75

vậy số đo ˆ A = 45 o , ˆ B = 60 o , ˆ C = 75 o

2 tháng 7 2017

\(\)Từ A:B:C=2:3:4 => \(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\)

Theo tính chất 3 góc của tam giác ta có A+B+C=180

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+3+4}=\frac{180}{9}=20\)

Vậy A=20.2=40

B=20.3=60

C=20.4=80

1: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED

Suy ra: DA=DE

2: \(\widehat{CAD}=\widehat{CED}=120^0\)