K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

Ta có: |x-2016| lớn hơn hoặc bằng 0 với mọi x thuộc R

(y-2017)^2 lớn hơn hoặc bằng 0 với mọi y thuộc R

=> |x-2016| + (y-2017)^2 luôn lớn hơn hoặc bằng 0 với mọi x,y thuộc R

=> |x-2016| + (y-2017)^2 + 2017 lớn hơn hoặc bằng 2017

=> A min = 2017 => Dấu = xảy ra <=> |x-2016| =0=> x= 2016

                                                              (y-2017)^2=0 => y= 2017

Vậy để Amin = 2017 thì x= 2016, y=2017.                 HẾT.......

23 tháng 1 2017

mk ko biết, nhìn hoi phức tạp nhỉ

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

23 tháng 5 2017

kkkkkkkkkkkkkkkkkk

23 tháng 5 2017

wopdjoqwedi

2 tháng 12 2019

Ta có : \(x^4-7x^2+y^2+16=2xy\)

=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)

=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)

Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)

=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)

=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)

Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)

Vậy A=8

2 tháng 12 2019

https://olm.vn/thanhvien/nguyentrangth8 bạn giỏi thế

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

Tại $x=2016$ thì $x-2016=0$

Khi đó:
$A=x^{2016}(x-2016)-x^{2015}(x-2016)+x^{2014}(x-2016)-x^{2013}(x-2016)+.....-x(x-2016)+x-2017$

$=x^{2016}.0-x^{2015}.0+......-x.0+2016-2017=2016-2017=-1$

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

11 tháng 12 2019

Dễ như 1+1=3