K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Ta có : \(x^4-7x^2+y^2+16=2xy\)

=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)

=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)

Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)

=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)

=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)

Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)

Vậy A=8

2 tháng 12 2019

https://olm.vn/thanhvien/nguyentrangth8 bạn giỏi thế

30 tháng 9 2016

\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow x^2+y^2+2xy=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2.\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=3.\left(5-2\right)=9\)

Câu 6:

\(\left(x-2016\right)^2\ge0\) với mọi x

\(\left(x+2017\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-2016\right)^2+\left(y+2017\right)^2=0\) Khi \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\)\(\left(x+2017\right)^2=0\Leftrightarrow x=-2017\)

\(\Rightarrow x+y=2016-2017=-1\)

Câu 7:

 \(D=\left(x+y\right)^2-6\left(x+y\right)-15=\left(-9\right)^2-6.\left(-9\right)-15=120\)

\(Q=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=-2\)

30 tháng 9 2016

câu 5:

x2+y2=5   -> x2+2xy+ y2-2xy=5

                -> (x+y)- 2xy = 5 -> 32  - 2xy = 5 ->xy = 2

có x3+ y3= (x+y).(x2-xy+y2)

              = 3.( 5- 2)= 9

vậy x3+ y=9

câu 6:

( x - 2016)2  ≥ 0 dấu = xảy ra khi x=2016

 ( y + 2017 )2  ≥ 0 dấu bằng xảy ra khi y = 2016

-> ( x - 2016)+ ( y + 2017 )2  ≥ 0 dấu bằng xảy ra khi x=2016, y = 2017

-> x+y=2016+2017=4033

câu 7:

a,

D = x2 +2xy +y - 6x - 6y  -15= (x2 +2xy +y2)  - (6x + 6y)  -15= (x+y)2 - 6(x+y) - 15

D= (-9)2 -6.(-9)-15=120

b,

Q = x2 + 2xy + y - 4x - 4y +1 = (x2 + 2xy + y2)  - (4x + 4y) +1

Q= (x+y)2-4.(x+y)+1

Q=32- 4.3 +1= -2

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

3 tháng 1 2021

Ta có: 5x2+5y2+8xy-2x+2y+2=0

=> 4x2+8xy+4y2+x2-2x+1+y2+2y+1=0

=> (2x+2y)2+(x-1)2+(y+1)2=0

=> {2x+2y=0 => x=-y

      {x-1 = 0 => x=1

      {y+1 =0 => y=-1

=> x=1, y=-1

Thay vào biểu thức M, ta có:

M=(1+-1)2015+(1-2)2016+(-1+1)2017=0+1+0=1 (đpcm)

20 tháng 12 2016

bài đầu tách thằnh 4x^2 và 4y^2 rồi gộp 2 cái đó vs 8xy rồi dùng hằng đẳng thức. cái còn lại thì ùng x^2 vs 2x và 1, đống còn lại cũng thế

bài sau chưa nghĩ j hêt

13 tháng 12 2017

phân tích đẳng thức trên

15 tháng 2 2020

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)

Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Rightarrow2012\le x+y+2016\le2014\)

Vậy ta có : 

+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)

+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)