Ai giúp mình vs:
Tính giá trị biểu thức: B=(1/2^2-1).(1/3^2-1). ... . (1/98^2-1).(1/99^2-1).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=19\frac{1}{4}+\frac{1}{2}\times2\frac{1}{3}+5,75-\frac{1}{6}+74\)
MK GHI ĐẦY ĐỦ RA RÙI, BẠN TỰ BẤM MÁY TÍNH LÀM NHA ( MÌNH LƯỜI )
\(A=19\frac{1}{4}+\frac{1}{2}\times2\frac{1}{3}+5,75-\frac{1}{6}+74\)
\(A=\frac{77}{4}+\frac{1}{2}\times\frac{7}{3}+\frac{23}{4}-\frac{1}{6}+74\)
\(A=\frac{77}{4}+\frac{7}{6}+\frac{23}{4}-\frac{1}{6}+74\)
\(A=(\frac{77}{4}+\frac{23}{4})+(\frac{7}{6}-\frac{1}{6})+74\)
\(A=25+1+74\)
\(A=26+74\)
\(A=100\)
1-2-3+4+5-6-7+....+100=(1-2-3+4)+(5-6-7+8)+.....+(97-98-99+100)=0+0+...+0=0
=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0+0+...+0
=0
vậy 0 là giá trị của biểu thức 1-2-3+4+5-6-7+...+97-98-99+100
BÀI NÀY MÌNH HỌC RỒI NÊN MÌNH LÀM ĐÚNG ĐÓ NHA!
\(a,\left(\dfrac{1}{x-1}-\dfrac{x}{x-1^2}.\dfrac{x^2+1+x}{x+1}\right):\dfrac{1}{x^2-1}\\ =\left(\dfrac{1}{x-1}-\dfrac{x\left(x^2+1+x\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1}{x^2-1}\\ =\left(\dfrac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^3+x+x^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1}{x^2-1}\)
\(\dfrac{x+1-x^3-x-x^2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1-x^3-x-x^2\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=1-x^3-x^2\)
b,
thay x=\(\dfrac{1}{2}\) vào bt M ta được:
\(1-\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^2=\dfrac{5}{8}\)
\(B=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(302-303-304+305\right)+306\)
Các giá trị trong ( ) đều bằng 0 nên:
B = 1 + 306 = 307.
\(\frac{1+3+5+...+2009}{1+2+3+...+2010}\)
\(=\frac{\frac{\left[\left(2009-1\right):2+1\right]\left(2009+1\right)}{2}}{\frac{\left(2010+1\right)2010}{2}}\)
\(=\frac{\frac{1005.2010}{2}}{\frac{2011.2010}{2}}\)
\(=\frac{1005.2010}{2}.\frac{2}{2011.2010}\)
\(=\frac{1005}{2011}\)
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~