K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

Tajuu Kage Bushino Jutsu

3 tháng 3 2016

ban sat long nhan natsu oi giai nhu vay thi ai hieu ham

24 tháng 1 2019

Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được

\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu "=" khi ay = bx

15 tháng 6 2019

Sửa đề : a) Tìm GTNN A

a) \(A=\left|x-5\right|+3\)có : \(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+3\ge0\)

\(\Leftrightarrow A\ge3\)dấu "=" xảy ra khi : \(\left|x-5\right|=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy GTNN A = 3 khi x = 5.

b) \(C=-\left|x+1\right|+5\)có : \(-\left|x+1\right|\le0\Rightarrow-\left|x+1\right|+5\le5\)

\(\Leftrightarrow C\le5\)dấu "=" xảy ra khi : \(-\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTLN C = 5 khi x = -1.

\(D=5-\left|2x+3\right|\)có : \(-\left|2x+3\right|\le0\Rightarrow5-\left|2x+3\right|\le5\)

\(\Leftrightarrow D\le5\)dấu "=" xảy ra khi : \(-\left|2x+3\right|=0\Leftrightarrow2x+3=0\Leftrightarrow x=-\frac{3}{2}\)

Vậy GTLN D = 5 khi x = -3/2.

c) \(\left|x-3\right|+\left|y+1\right|=0\)có \(\left|x-3\right|\ge0;\left|y+1\right|\ge0\Rightarrow\left|x-3\right|+\left|y+1\right|\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}.\)

15 tháng 6 2019
  • Đỗ Đức Lợi ơi
  • B=|2x+1|-4 

1 tháng 3 2017

Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)  \(\left(k\in R\right)\)

\(\Rightarrow x=3k;y=7k;z=2k\) Thay vào biểu thức \(\frac{2x-3y+5z}{x+4y-3z}\) ta được :

\(\frac{2x-3y+5z}{x+4y-3z}=\frac{2.3k-3.7k+5.2k}{3k+4.7k-3.2k}=\frac{k\left(2.3-3.7+5.2\right)}{k\left(3+4.7-3.2\right)}=\frac{6-21+10}{3+28-6}=\frac{-5}{25}=-\frac{1}{5}\)

Vậy \(\frac{2x-3y+5z}{x+4y-3z}=-\frac{1}{5}\) tại \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)