tìm n biết
2/3+2/15+2/35+..........+2/n=322/323
Dấu / là gạch phân số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/3+2/15+2/35+...+2/n x (n+2)=322/323
=2/1.3+2.3.5+2/5.7+...+2/n x(n+2)=322/323
= n+2 =323
n=323-2
n=321
2/3+2/15+2/35+...+2/n x (n+2) = 322/323
2/1x3+2/3x5+2/5x7 +...+ 2/nx(n+2) = 322/323
1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/(n+2) = 322/323
1-1/n+2 = 322/323
1/n+2 = 1-322/323
1/n+2 = 1/323
=> n+2 = 323
n = 323 - 2 = 321
Câu 1:15/35=3/7
216/270=4/5
250/750=1/3
Câu 2:8/18,12/27,16/36,20/45,24/54
Câu 3:1/2=2/4=3/6=4/8=5/10
Câu 4:2×3×5/2×7×5=30/70=3/7
Tk mình nhé bn!
Bài 1:
\(\frac{15}{35}=\frac{3}{7}\)
\(\frac{216}{270}=\frac{4}{5}\)
\(\frac{250}{750}=\frac{1}{3}\)
Bài 2:
5 phân số bằng phân số \(\frac{4}{9}\) là: \(\frac{8}{18};\frac{12}{27};\frac{16}{36};\frac{20}{45};\frac{24}{54}\)
Bài 3:
\(\frac{1}{2};\frac{2}{4};\frac{3}{6};\frac{4}{8};\frac{5}{10}\)
Bài 4:
\(\frac{2x3x5}{2x7x5}=\frac{3}{7}\)
=> 2/1x3 +2/3x5+2/5x7+2/7x9+...+2/nx(n+2)
=>1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9+...+1/n-1/n+2
=>1-1/n+2=100/101
1/n+2=1-100/101
1/n+2=1/101
=>n+2=101
=>n=101-2
=>n=99
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(1-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(\frac{1}{2n+1}=1-\frac{50}{51}=\frac{1}{51}\)
=> 2n + 1 = 51
=> 2n = 50
=> n = 25
Vậy n = 25
2/3 + 2/15 + 2/35 + ... + 2/n = 322/323
2/1x3 + 2/3x5 + 3/5x7 + ... + 2/nx(n+2) = 322/323
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + .... + 1/n-1 - 1/(n+2) = 322/323
1 - 1/n+2 = 322/323
1/n+2 = 1 - 322/323
1/n+2 = 1/323
=> x + 2 = 323
n = 323 - 2 = 321
2/3 + 2/15 + 2/35 + ... + 2/n = 322/323
2/1x3 + 2/3x5 + 3/5x7 + ... + 2/nx(n+2) = 322/323
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + .... + 1/n-1 - 1/(n+2) = 322/323
1 - 1/n+2 = 322/323
1/n+2 = 1 - 322/323
1/n+2 = 1/323
=> x + 2 = 323
n = 323 - 2 = 321