K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Cho tam giác ABC vuông góc tại A. Trên AB,BC lần lượt lấy D,E. CMR CD2-BC2=ED2-BE2

16 tháng 7 2021

a) đề phải là \(\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)

Ta có: \(\dfrac{EB}{FC}.\dfrac{AB}{AC}=\dfrac{BE.BA}{AC.CF}=\dfrac{BH^2}{CH^2}=\left(\dfrac{BH}{CH}\right)^2=\left(\dfrac{BH.BC}{CH.BC}\right)^2\)

\(=\left(\dfrac{AB^2}{AC^2}\right)^2=\dfrac{AB^4}{AC^4}\Rightarrow\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow AH^2=EF^2=EH^2+HF^2\)

Ta có: \(3AH^2+BE^2+CF^2=\left(BE^2+EH^2\right)+\left(CF^2+FH^2\right)+2AH^2\)

\(=BH^2+CH^2+2.BH.CH=\left(BH+CH\right)^2=BC^2\)

 

8 tháng 7 2021

undefined

15 tháng 2 2020

a) Xét tam giác MBD vuông tại D và tam giác NCE vuông tại E có:

BM=CN(gt)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

Suy ra \(\Delta MBD=\Delta NCE\)(cạnh huyền-góc nhọn)

=>EC=BD(2 cạnh tương ứng)

b) Xét tam giác ADB và tam giác ACE có:

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

AB=AC(tam giác ABC cân)

EC=BD(cmt)

Suy ra \(\Delta ADB=\Delta ACE\)(c.g.c)

=>AD=AE(2 cạnh tương ứng)

15 tháng 2 2020

A B C M N D E

a, xét tam giác BDM và tam giác CEN có : 

góc BDM = góc CEN = 90

BM = NC (Gt)

góc ABC = góc ACB do tam giác ABC cân tại A (Gt)

=> tam giác BDM = tam giác CEN (ch-gn)

b,  tam giác BDM = tam giác CEN (câu a)

=> góc BMD = góc CNE (đn)

góc BMD + góc DMA = 180 (kb)

góc CNE + góc ENA = 180 (kb)

=> góc DMA = góc ENA                                   (1)

có AB = AC do tam giác ABC cân tại A (gt)

BM = CN (gt)

BM + MA = AB

CN + NA = AC

=> MA = NA     (2)

xét tam giác DMA và tam giác ENA có MD = EN do tam giác BDM = tam giác CEN (câu a)

(1)(2)

=> tam giác DMA = tam giác ENA (c-g-c)

=> AD = AE (đn)

23 tháng 11 2023

a: Xét ΔBEM vuông tại M có \(\widehat{B}=45^0\)

nên ΔBEM vuông cân tại M

b: ME\(\perp\)BC

NF\(\perp\)BC

Do đó: ME//NF

Xét ΔCNF vuông tại N có \(\widehat{NCF}=45^0\)

nên ΔCNF vuông cân tại N

=>CN=NF

CN=NF

BM=ME

CN=NM=MB

Do đó: CN=NF=BM=ME=NM

Xét tứ giác NMEF có

NF//ME

NF=ME

Do đó: NMEF là hình bình hành

Hình bình hành NMEF có NM=NF

nên NMEF là hình thoi

Hình thoi NMEF có \(\widehat{FNM}=90^0\)

nên NMEF là hình vuông