K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Cho tam giác ABC vuông góc tại A. Trên AB,BC lần lượt lấy D,E. CMR CD2-BC2=ED2-BE2

15 tháng 2 2020

a) Xét tam giác MBD vuông tại D và tam giác NCE vuông tại E có:

BM=CN(gt)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

Suy ra \(\Delta MBD=\Delta NCE\)(cạnh huyền-góc nhọn)

=>EC=BD(2 cạnh tương ứng)

b) Xét tam giác ADB và tam giác ACE có:

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

AB=AC(tam giác ABC cân)

EC=BD(cmt)

Suy ra \(\Delta ADB=\Delta ACE\)(c.g.c)

=>AD=AE(2 cạnh tương ứng)

15 tháng 2 2020

A B C M N D E

a, xét tam giác BDM và tam giác CEN có : 

góc BDM = góc CEN = 90

BM = NC (Gt)

góc ABC = góc ACB do tam giác ABC cân tại A (Gt)

=> tam giác BDM = tam giác CEN (ch-gn)

b,  tam giác BDM = tam giác CEN (câu a)

=> góc BMD = góc CNE (đn)

góc BMD + góc DMA = 180 (kb)

góc CNE + góc ENA = 180 (kb)

=> góc DMA = góc ENA                                   (1)

có AB = AC do tam giác ABC cân tại A (gt)

BM = CN (gt)

BM + MA = AB

CN + NA = AC

=> MA = NA     (2)

xét tam giác DMA và tam giác ENA có MD = EN do tam giác BDM = tam giác CEN (câu a)

(1)(2)

=> tam giác DMA = tam giác ENA (c-g-c)

=> AD = AE (đn)

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

Suy ra: CB=CD

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB