K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2015

vì a=b=c nên a chỉ có thể bằng 0 hoặc 5 mà thôi vì b+c chia hết cho 5

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

Lời giải:

$a^5+b^5+c^5=(a^5-a)+(b^5-b)+(c^5-c)+(a+b+c)$
Giờ ta sẽ cmr với mọi số nguyên $x$ nào đó, $x^5-x\vdots 5$

Thật vậy:

$x^5-x=x(x^4-1)=x(x^2-1)(x^2+1)$

Nếu $x$ chia hết cho $5$ thì hiển nhiên $x^5-x\vdots 5$

Nếu $x$ không chia hết cho $5$: Do tính chất 1 số chính phương khi chia cho $5$ dư $0,1,4$, mà $x\not\vdots 5$ nên $x^2$ chia $5$ dư $1$ hoặc $4$.

+ Khi $x^2$ chia $5$ dư $1$ thì $x^2-1\vdots 5\Rightarrow x^5-x=x(x^2-1)(x^2+1)\vdots 5$

+ Khi $x^2$ chia $5$ dư $4$ thì $x^2+1\vdots 5\Rightarrow x^5-x=x(x^2-1)(x^2+1)\vdots 5$

Vậy tóm lại $x^5-x\vdots 5, \forall x\in\mathbb{Z}$

Áp dụng vào bài toán:

$a^5-a\vdots 5; b^5-b\vdots 5; c^5-c\vdots 5; a+b+c\vdots 5$

$\Rightarrow a^5+b^5+c^5\vdots 5$

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

22 tháng 11 2021

a/ 

\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)

\(=\left(98a+7b\right)+3\left(a+b\right)\)

\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)

\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)

b/ xem lại đề bài

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

22 tháng 7 2015

Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha 

trân thành cảm ơn