Tìm x \(\in\)N để
3x \(⋮\)2x + 9999999999.....999(100 chữ số 9)(x <101)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9 + 99 + 999 + .....+ 9999999999.......9999999(có 100 c/s 9)
=10-1+102-1+103-1+...+10100-1
=10+102+103+..+10100+(-1-1-1-...-1(100 chữ số 1))
=10+102+103+...+10100-100
Đặt : A=10+102+103+...+10100
=>10A=102+103+...+10101
=>10A-A=102+103+...+10101-10-102-103-...-10100
=>9A=10101-10
=>A=\(\frac{10^{101}-10}{9}\)
suy ra: 9 + 99 + 999 + .....+ 9999999999.......9999999(có 100 c/s 9)
=\(\frac{10^{101}-10}{9}-10^2-\frac{10^{101}-10}{9}-100\)
6666666........666 - 999999.........999
= 666........6666 x (1000......000 - 1) => Đến đây tự tính
Ta thấy :
9 x 7 =63
99 x 77 = 7623
999 x 777 = 776223
................
Rút ra quy luật ta có: \(\frac{999...9}{2013số}x\frac{777...7}{2013số}=\frac{777...7}{2012số}\frac{6}{1số}\frac{222...2}{2012số}\frac{3}{1số}\)
Tổng các chữ số m x n =7 x 2012 + 6 + 2 x 2012 + 3=38231
*** nha!
Bài này đâu phải toán lớp 3 . Mình nghĩ bài này từ lớp 8 - 9 mới học cơ!