K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

b: góc BAD+góc CAD=90 độ

góc BDA+góc HAD=90 độ

mà góc CAD=góc HAD

nên góc BAD=góc BDA

=>ΔBAD cân tại B

=>BF vuông góc AD tại F

Xét ΔEFA vuông tại F và ΔEHB vuôg tại H có

góc FEA=góc HEB

=>ΔEFA đồng dạng với ΔEHB

=>EF/EH=EA/EB

=>EF*EB=EA*EH

c: Xét ΔBAK và ΔBDK có

BA=BD

góc ABK=góc DBK

BK chung

=>ΔBAK=ΔBDK

=>góc BDK=90 độ

=>DK vuông góc BC

=>DK//AH

b) Ta có: KI\(\perp\)BC(gt)

AH\(\perp\)BC(gt)

Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)

Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)

Ta có: ΔABK=ΔIBK(cmt)

nên KA=KI(hai cạnh tương ứng)

Xét ΔKAI có KA=KI(cmt)

nên ΔKAI cân tại K(Định nghĩa tam giác cân)

Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)

Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)

a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có 

BK chung

\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)

24 tháng 4 2023

có cứt :)))) 

lol

 

a: BD/AD=BC/AC=5/4

b: Xét ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

c: Xét ΔDAC và ΔDKB có

góc DAC=góc DKB

góc ADC=góc KDB

=>ΔDAC đồng dạng với ΔDKB

=>DA/DK=DC/DB

=>DA*DB=DK*DC

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)