Tìm GTLN hoặc GTNN của biểu thức: B=(1-x)(3x+4)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(B\left(1-x\right)\left(3x+4\right)\)
\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)
\((BTD\)\(AM-GM)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)
\(\rightarrow B\text{⩽ }\frac{49}{12}\)
Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)
Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)
\(B=\left(1-x\right).\left(3x+4\right)\)
Ta có :
\(B=3x+4-3x^2-4x\)
\(B=-3x^2-x+4\)
\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)
\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)
\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)
Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)
\(\Rightarrow B\le\frac{49}{12}\)
\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)