K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

Chọn đáp án B

Gọi x 0 là nghiệm thực chung của 2 phương trình

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ x 0 2 + a x 0  + 1 =  x 0 2 -  x 0  - a ⇔ (a + 1) x 0 = -(a + 1) ⇔  x 0  = -1

Thay  x 0  = -1 vào phương trình  x 0 2 + a  x 0  + 1 = 0 tìm được a = 2

Ta có: \(\left(\sqrt{2}\right)^2+a\cdot\sqrt{2}+b=0\)

\(\Leftrightarrow a\sqrt{2}+b=-2\)

Vì b là số nguyên 

và -2 cũng là số nguyên

nên \(a\sqrt{2}\) cũng là số nguyên(vô lý)

25 tháng 9 2021

\(x^2+ax+b=0\) có nghiệm là \(\sqrt{2}\) nên

\(2+a\sqrt{2}+b=0\\ \Leftrightarrow b=a\sqrt{2}\)

Mà \(a,b\in Z\) nên đẳng thức xảy ra khi: \(a=b=0\)

27 tháng 9 2018

NV
4 tháng 4 2021

\(\Delta=a^2+8>0\Rightarrow\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=-2\end{matrix}\right.\)

\(N=x_1^2+x_2^2+x_1x_2+2\left(x_1+x_2\right)+4\)

\(=\left(x_1+x_2\right)^2-x_1x_2+2\left(x_1+x_2\right)+4\)

\(=a^2+2+2a+4\)

\(N=a^2+2a+6=\left(a+1\right)^2+5\ge5\)

\(N_{min}=5\) khi \(a=-1\)

a: Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8=(2m-2)^2+8>0 với mọi m

=>PT luôn có hai nghiệm pb

b: PT có hai nghiệm trái dấu

=>2m-3<0

=>m<3/2

NV
18 tháng 3 2021

Do pt có 1 nghiệm là \(2-\sqrt{3}\)

\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)

\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)

\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)

Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)

23 tháng 8 2017

Đáp án D

Ta có lim x → 2 − f x = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − − 2 x − 3 = − 1  

Và lim x → 2 − f x = lim x → 2 − a + 1 − x 2 + x = a − 1 4 ; f 2 = a − 1 4 .  

Theo bài ra, ta có lim x → 2 + f x = lim x → 2 − f x = f 2 ⇒ a = − 3 4  

Do đó, bất phương trình − x 2 + a   x + 7 4 > 0 ⇔ − x 2 − 3 4 x + 7 4 > 0 ⇔ − 7 4 < x < 1.  

30 tháng 11 2018

PT có nghiệm chung khi \(x^2+ax+8=x^2+x+a\)

                                    \(\Leftrightarrow ax+8-x-a=o\)

                                     \(\Leftrightarrow a\left(x-1\right)-\left(x-1\right)+7=0\)

                                     \(\Leftrightarrow\left(x-1\right)\left(a-1\right)=-7\)

-7=(-1).7=(-7).1

TH1\(\hept{\begin{cases}x-1=-1\\a-1=7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\a=8\end{cases}}\)thế vào \(x^2+x+a=0\)(thế vào pt trên cx đc nha) có: 8=0(vô lý) loại

TH2 \(\hept{\begin{cases}x-1=-7\\a-1=1\end{cases}}\)(giải như trên) (loại)

TH3\(\hept{\begin{cases}x-1=7\\a-1=-1\end{cases}}\)(loại)

Th4\(\hept{\begin{cases}x-1=1\\a-1=-7\end{cases}}\)=>\(\hept{\begin{cases}x=2\\a=-6\end{cases}}\)thế vào \(x^2+x+a=0\) có  \(2^2+2-6=0\) thỏa mãn

Vậy với a=-6 thì 2 pt có nghiệm chng