K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

+) Nếu n chẵn , Viết n dạng n = 2 + m ; m chẵn và > 3

+) Nếu n lẻ, Viết n dạng n = 3 + m ; m chẵn và > 2

Theo mệnh đề EuLer: Mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố

=> Nếu n chẵn hay lẻ thì luôn biểu diễn được dưới dạng tổng của 3 số nguyên tố

*) Tuy nhiên, mệnh đề EuLer hiện tại chưa được giải quyết trọn vẹn. Bài này đưa ra nếu giả sử đã chứng minh mệnh đề EuLer! 

6 tháng 6 2015

.... Chưa biết làm ....

31 tháng 5 2015

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k \(\in\) N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 

xét n lẻ =>n=2k+1=k+(k+1)

gọi d là ƯCLN(k;k+1).

=>k;k+1 chia hết cho d

=>1 chia hết cho d =>d=1

=>(k;k+1) nguyên tố cùng nhau  (1)

xét n chẵn 

nếu n=4k

=>n=(k+3)+(2k+1)

gọi d là ƯCLN(k+3;2k+1).

k+3;2k+1 chia hết cho d

=>8 chia hết cho d

vì 2k+1 không chia hết cho 2 =>d=1

=>k+3 và 2k+1 nguyên tố cùng nhau (2)

xét n=4k+2

=>n=(2k-1)+(2k+3)

gọi d là ƯCLN(2k-1;2k+3).

2k-1;2k+3 chia hết cho d

=>4 chia hết cho d

=>d\(\in\){1;2;4}

vì 2k+3 không chia hết cho 2

=>d=1

=>2k-1 và 2k+3 nguyên tố cung nhau (3)

từ (1);(2) và (3) =>đpcm

5 tháng 6 2015

kẻ bí mật copy bài của Đinh Tuấn Việt

15 tháng 5 2016

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k $\in$ N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3 (k $\in$ N*) 

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 (k $\in$ N*) 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 (k $\in$ N*) 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 (k )

Viết n = ( 6k + 1 ) + 3

Dễ có : 6k + 1 và ba nguyên tố cùng nhau

11 tháng 12 2016

Cai link nay se giup ich cho cau!

http://olm.vn/hoi-dap/question/94431.html

11 tháng 12 2016

bạn bị lào sao vậy Cửu vĩ linh hồ Kurama?Nó chẳng liên quan gì cả.

19 tháng 1 2017

xin loi minh ko biet

xin loi minh ko biet

xin loi minh ko biet

18 tháng 3 2017

ko bik 

ko bik

ko bik

xin loi

xin loi

xin loi

a) 6=2+2+2

7=2+2+3

8=2+3+3

b) 30= 13+17= 7+23

32=3+29 = 19+13

5 tháng 9 2016

a) Chứng minh: gọi số tự nhiên đó là n (n>5)

+) Nếu n chẵn => n= 2+m trong đó m chẵn ;m>3

+) Nếu n lẻ => n= 3+m trong đó m lẻ; m> 2

Theo mệnh đề Euler => m được viết dưới dạng tổng quát của 2 số nguyên tố

=> n là tổng quát của các số nguên tố

6= 3+3 

7= 2+5

8= 3+5 (dựa vào số lẻ và chẵn như tổng quát trên)

b) CM như câu trên:

30= 7+23

32=19+13

17 tháng 11 2017

a,6=2+2+2

7=2+2+3

8=3+3+2

b,30=17+13

32=19+13

17 tháng 11 2017

a) 6 = 2+2+2

7 = 2+2+3

8 = 2+3+3

b) 30 = 19 + 11

32 = 19 +13

20 tháng 9 2016

a) Euler phát biểu như sau: " Mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố . "

Nên ta có bài giải sau:

6 = 2 + 4 

=> 6 = 2 + 2 + 2

7 = 3 + 4  

=> 7 = 3 + 2 + 2

8 = 2 + 6 

=> 8 = 2 + 2 + 4

Vậy 6 = 2 + 2 + 2

       7 = 3 + 2 + 2

       8 = 2 + 2 + 4

 

16 tháng 10 2016

sai rùi bn ạ!

18 tháng 10 2016

a) Euler phát biểu như sau: "mọi số chẵn lớn hơn 2 đều biểu diễn được dưới dạng tổng của 2 số nguyên tố"
Nên ta có bài giải sau:
6=2+4 (với 4 là số chẳn >2 nên như phát biểu Euler thì sẽ 4 sẽ viết được dưới dạng tổng của 2 số nguyên tố)
=> 6=2+2+2
7=3+4 (lập luận như trên ta cũng có kết quả)
=> 7=3+2+2
8 Hoàn toàn tương tự 6
=> 8=2+6=2+2+4

18 tháng 10 2016

a, Ta có :

 6=2+2+2                       7=2+3+2                                 8=2+3+3

b, Ta có:

30=13+17                                         32=13+19