So sánh A và B biết:
A=\(\frac{10^{17}+1}{10^{18}+1}\), B=\(\frac{10^{18}+1}{10^{19}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{10^{18}+1}{10^{19}+1}>\frac{10.\left(10^{17}+1\right)}{10.\left(10^{18}+1\right)}=\frac{10^{17}+1}{10^{18}+1}\)
Vậy A < B
Do \(\dfrac{10^{18}+1}{10^{19}+2}< 1\Rightarrow B< \dfrac{10^{18}+1+9}{10^{19}+1+9}\)
\(\Rightarrow B< \dfrac{10^{18}+10}{10^{19}+10}\)
\(\Rightarrow B< \dfrac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)
\(\Rightarrow B< \dfrac{10^{17}+1}{10^{18}+1}\)
\(\Rightarrow B< A\)
So sánh 2 phân số sau $\frac{10^{2011}+10}{10^{2012}+10}v\text{à}\frac{10^{2012}-10}{10^{2013}-10}$102011+10102012+10 và102012−10102013−10
kick dzô chữ xanh là được!! OK
Ta có :
10. A = \(\frac{10.\left(10^{2011}+1\right)}{10^{2012}+1}\)
= \(\frac{10^{2012}+10}{10^{2012}+1}\)
= \(\frac{10^{2012}+1+9}{10^{2012}+1}\)
= \(\frac{10^{2012}+1}{10^{2012}+1}-\frac{9}{10^{2012}+1}\)
= 1 - \(\frac{9}{10^{2012}+1}\)
10 . B = \(\frac{10.\left(10^{2012}+1\right)}{10^{2013}+1}\)
= \(\frac{10^{2013}+10}{10^{2013}+1}\)
= \(\frac{10^{2013}+1+9}{10^{2013}+1}\)
= 1 - \(\frac{9}{10^{2013}+1}\)
Vì \(\frac{9}{10^{2012}+1}\) >\(\frac{9}{10^{2013}+1}\) nên 10.A > 10.B
=> A >B
Vậy ...........
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
\(10^{17}<10^{18}\)
\(\left(\frac{1}{10}\right)^{18}<\left(\frac{1}{10}\right)^{19}\)
Vậy A < B
vậy đúng không???
ta thấy :
\(\frac{10^{18}+4}{10^{19}-1}>\frac{10^8}{10^{19}-1}\)
nhưng
\(\frac{10^8}{10^{19}-5}\)<\(\frac{10^8}{10^{19}-1}\)
=>\(\frac{10^{18}+4}{10^{19}-1}>\frac{10^8}{10^{19}-5}\)
(dạng toán so sánh, dùng một số trung gian)
Vì \(\frac{10^{18}+1}{10^{19}+1}< 1\Rightarrow B=\frac{10^{18}+1}{10^{19}+1}< \frac{10^{18}+1+9}{10^{19}+1+9}\)
\(\Rightarrow B< \frac{10^{18}+10}{10^{19}+10}\)
\(\Rightarrow B< \frac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)
\(\Rightarrow B< \frac{10^{17}+1}{10^{18}+1}\)
\(\Rightarrow B< A\)
Vậy A > B.