Thực hiện phép tính:
(x+5)^2+(x-2)^2-4(x-3)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5x+2}{x^2-4}+\dfrac{x-5}{x-2}=\dfrac{5x+2+x^2-3x-10}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+2x-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+4}{x+2}\\ \left(x+4\right)^2-\left(x+3\right)\left(x-2\right)=-13\\ \Leftrightarrow x^2+8x+16-x^2+x+6=-13\\ \Leftrightarrow9x=-13-22=-35\\ \Leftrightarrow x=-\dfrac{35}{9}\)
\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x^3+5\right)\)
\(=x^3-8-x^3-5\)
=-13
\(\left(x-2\right)\cdot\left(x^2+2x+4\right)-\left(x^3+5\right)\\ =x^2-8-x^3-5\\ =-13\)
a: \(\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)
\(=\dfrac{4-x^2-2x+2x^2+5-4x}{x-3}=\dfrac{x^2-6x+9}{x-3}\)
=(x-3)^2/(x-3)
=x-3
b: \(\dfrac{2}{x+2}+\dfrac{-4}{2-x}+\dfrac{5x+2}{4-x^2}\)
\(=\dfrac{2}{x+2}-\dfrac{4}{x-2}-\dfrac{5x+2}{x^2-4}\)
\(=\dfrac{2x-4-4x-8-5x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-7x-14}{\left(x-2\right)\left(x+2\right)}\)
=-7(x+2)/(x-2)(x+2)
=-7/(x-2)
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
\(\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{x^2-9}\)
ĐKXĐ : \(x\ne\pm3\)
\(=\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}+\frac{5x-15}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12+5x-15-13+9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{9x^2+9x-16}{\left(x+3\right)\left(x-3\right)}=\frac{9x^2+9x-16}{x^2-9}\)
a/ \(\left(2x+3\right)\left(x-5\right)-\left(x-1\right)^2+x\left(7-x\right)\)
\(=2x^2-2x-15-x^2+2x-1+7x-x^2\)
\(=7x-16\)
a: \(=\dfrac{5}{2x^2y}+\dfrac{2}{3xy}-\dfrac{y}{x^3}\)
\(=\dfrac{5\cdot3\cdot x}{6x^3y}+\dfrac{2\cdot2\cdot x^2}{6x^3y}-\dfrac{6y^2}{6x^3y}\)
\(=\dfrac{15x+4x^2-6y^2}{6x^3y}\)
b: \(=\dfrac{2x-7+3x+5}{10x-4}=\dfrac{5x-2}{10x-4}=\dfrac{1}{2}\)
c: \(=\dfrac{x^4-1-x^4+3x^2}{x^2-1}=\dfrac{3x^2-1}{x^2-1}\)
(x+5)2+(x-2)2-4(x-3)(x+3)
=x2+10x+25+x2-4x+4-4x2+36
=x2+x2-4x2+10x-4x+25+4+36
=-2x2+6x+65