Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x^2 + 3( x-1)(x+1) - 5x(x+1)
= 2x^2 + 3( x^2 -1 ) - 5x(x+1)
= 2x^2 + 3x^2 - 3 - 5x^2 - 5x
= -5x -3
\(\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{x^2-9}\)
ĐKXĐ : \(x\ne\pm3\)
\(=\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}+\frac{5x-15}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12+5x-15-13+9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{9x^2+9x-16}{\left(x+3\right)\left(x-3\right)}=\frac{9x^2+9x-16}{x^2-9}\)
a: \(\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)
\(=\dfrac{4-x^2-2x+2x^2+5-4x}{x-3}=\dfrac{x^2-6x+9}{x-3}\)
=(x-3)^2/(x-3)
=x-3
b: \(\dfrac{2}{x+2}+\dfrac{-4}{2-x}+\dfrac{5x+2}{4-x^2}\)
\(=\dfrac{2}{x+2}-\dfrac{4}{x-2}-\dfrac{5x+2}{x^2-4}\)
\(=\dfrac{2x-4-4x-8-5x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-7x-14}{\left(x-2\right)\left(x+2\right)}\)
=-7(x+2)/(x-2)(x+2)
=-7/(x-2)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
2x^4 + 2x^3 + 3x^2 - 5x - 20 x^2 + x + 4 2x^2 - 5 2x^4 + 2x^3 + 8x^2 -5x^2 - 5x - 20 -5x^2 - 5x - 20 0
Vậy \(\left(2x^4+2x^3+3x^2-5x-20\right):\left(x^2+x+4\right)=2x^2-5\)
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)
\(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5x-2}{x^2-4}\)ĐK : \(x\ne\pm2\)
\(=\frac{4\left(x-2\right)+3\left(x+2\right)-5x-2}{\left(x+2\right)\left(x-2\right)}=\frac{4x-8+3x+6-5x-2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{2x-4}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2}{x+2}\)
phần dưới là tìm x
\(\dfrac{5x+2}{x^2-4}+\dfrac{x-5}{x-2}=\dfrac{5x+2+x^2-3x-10}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+2x-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+4}{x+2}\\ \left(x+4\right)^2-\left(x+3\right)\left(x-2\right)=-13\\ \Leftrightarrow x^2+8x+16-x^2+x+6=-13\\ \Leftrightarrow9x=-13-22=-35\\ \Leftrightarrow x=-\dfrac{35}{9}\)