K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

undefinedundefined

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

11 tháng 1 2018

Câu a) Nè

Áp dụng định lí Pythagoras vào tam giác ABC

Ta có: \(AB^2+AC^2=BC^2\)

Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC

Áp dụng tính chât đường cao của tam giác vuông

Ta có: \(AH\cdot BC=AB\cdot AC\)

Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)

Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

Vậy Kết luận 

~~~ Hết ~~~

Chụy là chanh đừng nhờn với chụy nha em.

Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết 

24 tháng 10 2021

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=2,4(cm)

6 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠B = ∠CAH (cùng phụ C)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/HC = HB/AH

⇒ AH.AH = HB.HC

⇒ AH² = HB.HC

Xét hai tam giác vuông: ∆ABC và ∆HAC có:

∠C chung

⇒ ∆ABC ∽ ∆HAC (g-g)

⇒ AC/HC = BC/AC

⇒ AC.AC = HC.BC

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 3² + 4²

= 25

⇒ BC = 5 (cm)

Do AD là tia phân giác của ∠BAC

⇒ BD/CD = AB/AC

⇒ AB/BD = AC/CD 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

AB/BD = AC/CD = (AB + AC)/(BD + CD) = (3 + 4)/5 = 7/5

Do AB/BD = 7/5

⇒ BD = AB.5/7 = 3.5/7 = 15/7 (cm)

a: Xét ΔBAE vuông tại A và ΔBHD vuông tại H có

góc ABE=góc HBD

=>ΔBAE đồng dạng với ΔBHD

b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vói ΔABC

b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)

AH=3*4/5=2,4cm

HB=4^2/5=3,2cm

c: FH/FA=BH/BA

EA/EC=BA/BC

BH/BA=BA/BC

=>FH/FA=EA/EC

2 tháng 5 2021

a, theo pitago đảo: 21+282=1225=352 suy ra tam giác ABC vuông

b,theo pitago

AH2=AB2-BH2=AC2-CH2 suy ra 2AH2=AB2+AC2-BH2-CH

suy ra 2AH2=BC2-BH2-CH2 (Mà BC=BH+CH) suy ra 2AH2=2BHxCH

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)