K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

a) \(\sqrt{16}\).\(\sqrt{25}\)+\(\sqrt{196}\):\(\sqrt{49}\)

=4.5+14/7

=20+2

=22

21 tháng 5 2021

a) \(\sqrt{16}\).\(\sqrt{25}\) + \(\sqrt{196}\) : \(\sqrt{49}\) = 4.5+14:9=22

b) 36:\(\sqrt{2.3^2.18}\) - \(\sqrt{169}\)= 36 :  \(\)18 - 13 = -11

c) \(\sqrt{\sqrt{81}}\) = 3

d) \(\sqrt{3^2+4^2}\)\(\sqrt{25}\)=5

19 tháng 4 2021

a, Ta có  \(\sqrt{25-16}=\sqrt{9}=3\)

\(\sqrt{25}-\sqrt{16}=5-4=1\)

Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

13 tháng 5 2021

a) căn 25 - 16  > căn 25 - căn 16

 

b)Với a>b>0a>b>0 nên  \sqrt{a},\sqrt{b},\sqrt{a-b}a,b, đều xác định

 

Để so sánh \sqrt{a}-\sqrt{b}ab và \sqrt{a-b} ta quy về so sánh \sqrt{a}a và \sqrt{a-b}+\sqrt{b}+b.

 

+) (\sqrt{a})^2=a(a)2=a.

                                       

+) (\sqrt{a-b}+\sqrt{b})^2=(\sqrt{a-b})^2+2\sqrt{a-b}.\sqrt{b}+(\sqrt{b})^2=a-b+b+2\sqrt{a-b}.\sqrt{b}=a+2\sqrt{a-b}.\sqrt{b}(+b)2=()2+2.b+(b)2=ab+b+2.b=a+2

.b.

Do a>b>0a>b>0 nên 2\sqrt{a-b}.\sqrt{b}>02.b>0

 

 

\Rightarrow a+2\sqrt{a-b}.\sqrt{b}>aa+2.b>a

 

\Rightarrow (\sqrt{a-b}+\sqrt{b})^2>(\sqrt{a})^2(+b)2>(a)2

 

Do \sqrt{a},\sqrt{a-b}+\sqrt{b}>0a,+b>0 

 

\Rightarrow \sqrt{a-b}+\sqrt{b}>\sqrt{a}+b>a

 

\Leftrightarrow \sqrt{a-b}>\sqrt{a}-\sqrt{b}>ab (đpcm)

 

Vậy \sqrt{a-b}>\sqrt{a}-\sqrt{b}>ab.

16 tháng 4 2021

a) Ta có: 

+)√25+9=√34+)25+9=34.

+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3

=8=√82=√64=8=82=64.

Vì 34<6434<64 nên √34<√6434<64

Vậy √25+9<√25+√925+9<25+9

b) Với a>0,b>0a>0,b>0, ta có

+)(√a+b)2=a+b+)(a+b)2=a+b.

+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2

 =a+2√ab+b=a+2ab+b

 =(a+b)+2√ab=(a+b)+2ab. 

Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0

⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b

⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2

⇔√a+√b>√a+b⇔a+b>a+b (đpcm)

17 tháng 4 2021

a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)

\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)

mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)

\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )

Vậy ta có đpcm 

14 tháng 4 2021

a) (\(\sqrt{3}\)-1)2=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

b) \(\sqrt{4-2\sqrt{3}}\)=\(\sqrt{3}\)-1 >0

Bình phương 2 vế, ta có:

4-2\(\sqrt{3}\)=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

21 tháng 5 2021

a)  \(\left(\sqrt{3}-1\right)^2\)=\(\left(\sqrt{3}\right)^2\)- 2\(\sqrt{3}\) +1= 3- 2\(\sqrt{3}\) +1=4-2\(\sqrt{3}\)

b)  \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\)\(|\sqrt{3}-1|\)-\(\sqrt{3}\)=\(\sqrt{3}\)-1-\(\sqrt{3}\)=-1

 

19 tháng 4 2021

a, \(\sqrt{\frac{289}{25}}=\frac{\sqrt{289}}{\sqrt{25}}=\frac{17}{5}\)

b, \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)

c, \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}\)

d, \(\sqrt{\frac{8,1}{16}}\)đề có sai ko cô ? 

13 tháng 5 2021

a) căn 289 / 225 = 17/15

b) căn 64/ 25 = 8/5

c) căn 0,25 / 9 = 1/6

d) căn 8,1 / 1,6 = 9/4

17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

14 tháng 5 2021

a) \(\dfrac{40}{27}\)

b) \(\dfrac{196}{45}\)

c) \(\dfrac{56}{9}\)

d) 1296

19 tháng 5 2021

a) \sqrt{\dfrac{25}{81} \cdot \dfrac{16}{49} \cdot \dfrac{196}{9}}812549169196

=\sqrt{\dfrac{25}{81}} \cdot \sqrt{\dfrac{16}{49}} \cdot \sqrt{\dfrac{196}{9}}=812549169196

=\sqrt{\left(\dfrac{5}{9}\right)^{2}} \cdot \sqrt{\left(\dfrac{4}{7}\right)^{2}} \cdot \sqrt{\left(\dfrac{14}{3}\right)^{2}}=(95)2(74)2(314)2

=\dfrac{5}{9} \cdot \dfrac{4}{7} \cdot \dfrac{14}{3}=\dfrac{40}{27}=9574314=2740.

b) \sqrt{3 \dfrac{1}{16} \cdot 2 \dfrac{14}{25} \cdot 2 \dfrac{34}{81}}31612251428134

=\sqrt{\dfrac{49}{16} \cdot \dfrac{64}{25} \cdot \dfrac{196}{81}}=1649256481196

=\sqrt{\dfrac{49}{16}} \cdot \sqrt{\dfrac{64}{25}} \cdot \sqrt{\dfrac{196}{81}}=1649256481196

=\sqrt{\left(\dfrac{7}{4}\right)^{2}} \cdot \sqrt{\left(\dfrac{8}{5}\right)^{2}} \cdot \sqrt{\left(\dfrac{14}{9}\right)^{2}}=(47)2(58)2(914)2

=\dfrac{7}{4} \cdot \dfrac{8}{5} \cdot \dfrac{14}{9}=\dfrac{196}{45}=4758914=45196.

c) \dfrac{\sqrt{640} \cdot \sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.343}{567}}56764034,3=567640.34,3=56764.343

=\sqrt{\dfrac{64.49 .7}{81.7}}=\sqrt{\dfrac{64.49}{81}}=81.764.49.7=8164.49

=\dfrac{\sqrt{64} \cdot \sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=816449=98.7

=\dfrac{56}{9}=956.

d) \sqrt{21,6} \cdot \sqrt{810} \cdot \sqrt{11^{2}-5^{2}}21,681011252

=\sqrt{21,6.810 \cdot\left(11^{2}-5^{2}\right)}=21,6.810(11252)

=\sqrt{216.81 .(11+5)(11-5)}=216.81.(11+5)(115)

=\sqrt{36.6 .9^{2} \cdot 4^{2} .6}=36.6.9242.6

=\sqrt{36^{2} .9^{2} \cdot 4^{2}}=36.9 .4=1296=362.9242=36.9.4=1296.

16 tháng 4 2021

a) Điều kiện: x≥0x≥0

√16x=816x=8⇔(√16x)2=82⇔(16x)2=82 ⇔16x=64⇔16x=64 ⇔x=6416⇔x=4⇔x=6416⇔x=4 (thỏa mãn điều kiện)

Vậy x=4x=4.

Cách khác: 

√16x=8⇔√16.√x=8⇔4√x=8⇔√x=2⇔x=22⇔x=416x=8⇔16.x=8⇔4x=8⇔x=2⇔x=22⇔x=4

b) Điều kiện: 4x≥0⇔x≥04x≥0⇔x≥0

 √4x=√54x=5 ⇔(√4x)2=(√5)2⇔4x=5⇔x=54⇔(4x)2=(5)2⇔4x=5⇔x=54 (thỏa mãn điều kiện) 

Vậy x=54x=54.

c) Điều kiện: 9(x−1)≥0⇔x−1≥0⇔x≥19(x−1)≥0⇔x−1≥0⇔x≥1

√9(x−1)=219(x−1)=21⇔3√x−1=21⇔3x−1=21⇔√x−1=7⇔x−1=7 ⇔x−1=49⇔x=50⇔x−1=49⇔x=50 (thỏa mãn điều kiện)

Vậy x=50x=50.

Cách khác:

√9(x−1)=21⇔9(x−1)=212⇔9(x−1)=441⇔x−1=49⇔x=509(x−1)=21⇔9(x−1)=212⇔9(x−1)=441⇔x−1=49⇔x=50

d) Điều kiện: x∈Rx∈R (vì 4.(1−x)2≥04.(1−x)2≥0 với mọi x)x)

√4(1−x)2−6=04(1−x)2−6=0⇔2√(1−x)2=6⇔2(1−x)2=6 ⇔|1−x|=3⇔|1−x|=3 ⇔[1−x=31−x=−3⇔[1−x=31−x=−3 ⇔[x=−2x=4⇔[x=−2x=4 

Vậy x=−2;x=4.



 

17 tháng 4 2021

a, \(\sqrt{16x}=8\Leftrightarrow4\sqrt{x}=8\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

b, \(\sqrt{4x}=\sqrt{5}\)ĐK : x \(\ge0\)

bình phương 2 vế ta được : \(4x=5\Leftrightarrow x=\frac{5}{4}\)

c, \(\sqrt{9\left(x-1\right)}=21\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\)

bình phương 2 vế ta được : \(x-1=49\Leftrightarrow x=50\)

d, \(\sqrt{4\left(1-x\right)^2}-6=0\Leftrightarrow2\left|1-x\right|=6\Leftrightarrow\left|1-x\right|=3\)

TH1 : \(1-x=3\Leftrightarrow x=-2\)

TH2 : \(1-x=-3\Leftrightarrow x=4\)

\(a,B=4\sqrt{x=1}-3\sqrt{x+1}+2\)\(\sqrt{x+1}+\sqrt{x+1}\)

\(=4\sqrt{x+1}\)

\(b,\)đưa về \(\sqrt{x+1}=4\Rightarrow x=15\)

29 tháng 4 2021

a, Với \(x\ge-1\)

\(\Rightarrow B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(=4\sqrt{x+1}\)

b, Ta có B = 16 hay 

\(4\sqrt{x+1}=16\Leftrightarrow\sqrt{x+1}=4\)bình phương 2 vế ta được 

\(\Leftrightarrow x+1=16\Leftrightarrow x=15\)

14 tháng 4 2021

a) \(\sqrt{x^2}\)=7

=> x2=49

=> x={-7;7}

b) \(\sqrt{x^2}\)=|-8|=8

=> x2=64

=>x={-8;8}

c) \(\sqrt{4x^2}\)=6

4x2=36

=>x2=9

=> x={-3;3}

d)\(\sqrt{9x^2}\)=|-12|=12

=> 9x2=144

=> x2=16

=> x={-4;4}

20 tháng 5 2021

a)x=+7 hoặc x= -7

b) x=8 hoặc x= -8

c)x=3 hoặc x =-3

d) x=4 hoặc x= -4