So sánh: A=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{37}+\dfrac{1}{61}+\dfrac{1}{77}+\dfrac{1}{113}\)và B=\(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hơi nhầm xíu 113 . 7^2+8^2=113 cứ tưởng 112. Hơi ngáo tí =[[
Lời giải
Biến đổi tương đương ta được: \(L=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}=\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+\dfrac{1}{4^2+5^2}+\dfrac{1}{5^2+6^2}+\dfrac{1}{6^2+7^2}+\dfrac{1}{7^2+8^2}\)
\(L=\dfrac{1}{1^2+\left(1+1\right)^2}+\dfrac{1}{2^2+\left(2+1\right)^2}+...+\dfrac{1}{7^2+\left(7+1\right)^2}\)
Chứng minh 1 bđt cơ bản sau: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\) thật vậy:
\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1=2n\left(n+1\right)+1>2n\left(n+1\right)\)
\(\Rightarrow\dfrac{1}{n^2+\left(n+1\right)^2}< \dfrac{1}{2n\left(n+1\right)}\)
trở lại bài toán ta có: \(L< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+...+\dfrac{1}{2.7.8}\)
\(L< \dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..+\dfrac{1}{7.8}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{8}\right)=\dfrac{1}{2}-\dfrac{1}{16}< \dfrac{1}{2}\left(đpcm\right)\)
Đề sai đúng hk? CHỗ kia 112 chứ lấy đâu ra 113
p/s : 7^2+8^2=112. =))
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
bài 2
a;đặt biểu thức là S | |
S < 1/1.2 + 1/2.3 + .......1/(n-1)n | |
= 1- 1/2 +1 /2 -1/3+........ + 1/n-1 - 1/n | |
= 1 -1/n <1 |
|
vậy S < 1 | |
c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)
E = \(\dfrac{4116-14}{10290-35}\)
E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)
E = \(\dfrac{14}{35}\)
K = \(\dfrac{2929-101}{2.1919+404}\)
K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)
K = \(\dfrac{29-1}{34+8}\)
K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)
Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)
\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)
\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)
Vậy E < K
Các câu còn lại tương tự
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
Câu 1 :
\(\dfrac{-25}{37}\&\dfrac{-20}{31}\)
Ta thấy \(\dfrac{-25}{37}< \dfrac{-20}{37}\)
mà \(\dfrac{-20}{37}< \dfrac{-20}{31}\)
\(\Rightarrow\dfrac{-25}{37}< \dfrac{-20}{31}\)
Câu 2 :
\(\dfrac{2}{3}\&\dfrac{5}{7}\)
\(\dfrac{2}{3}:\dfrac{5}{7}=\dfrac{2}{3}.\dfrac{7}{5}=\dfrac{14}{15}< 1\)
\(\Rightarrow\dfrac{5}{7}>\dfrac{2}{3}\) Câu 3 : \(\dfrac{8}{13}\&\dfrac{5}{7}\)Ta thấy \(\dfrac{8}{13}:\dfrac{5}{7}=\dfrac{8}{13}.\dfrac{7}{5}=\dfrac{56}{65}< 1\)
\(\Rightarrow\dfrac{8}{13}< \dfrac{5}{7}\)Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.
Xét:
`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`
`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`
`=>A+B>2`
Mà `1 2013/2014<2`
`=>A+B>1 2013/2014`
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)