Cho tam giác ABC vuông tại a a tính AC biết BC=13cm AB=5cm b tính BC biết AB=4cm AC=7cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{BC^2+AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Các tỉ số lượng giác của góc B là:
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)
\(cotg=\dfrac{AB}{AC}=\dfrac{3}{4}\)
Các câu b), c) làm tương tự nhé
a: AC=căn 5^2-3^2=4cm
sin B=AC/BC=4/5
cos B=AB/BC=3/5
tan B=4/3
cot B=1:4/3=3/4
b: AB=căn 13^2-12^2=5cm
sin B=AC/BC=12/13
cos B=AB/BC=5/13
tan B=12/13:5/13=12/5
cot B=1:12/5=5/12
c: BC=căn 4^2+3^2=5cm
sin B=AC/BC=4/5
cos B=AB/BC=3/5
tan B=4/3
cot B=3/4
Câu 4:
\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a, Áp dụng định lý Pitago:
`AB^2 + AC^2 = BC^2`
`=> 25 + AC^2 = 169`
`=> AC^2 = 144`
`=> sqrt 144 = 12`.
b. Áp dụng định lý Pytago ta có:
`AB^2 + AC^2 = BC^2`
`16 + 49 = BC^2`
`BC^2 = 65`
`BC = sqrt 65`.
Áp dụng định lí Pitago trong tam giác ABC vuông tại A
AC = BC2 + AB2
= 132 + 52
= \(\sqrt{194}\) = 14 cm
Áp dụng định lí Pitago trong tam giác ABC cân tại A
BC = AB2 + AC2
= 42 + 72
= \(\sqrt{65}\) = 8 cm