K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Đầu tiên anh thu gọn S cho em nhé

Ta có: S = 1 + 3 + 32 + 33 + ...... + 330

=> 3S =   3 + 3 2  + 3 3  + ...... + 3 30

=> 3S - S = 3 30  - 1

=> 2S = 3 30  - 1

=> S =   3 30  - 1/2

Ta có : (330 - 1 = 328.27 - 1 = 34.7 . 27 - 1 = (.....1) . 27 - 1 = (......7) - 1 = ( ....... 6) 

Mà S = (.......6) : 2 = (......3)

24 tháng 10 2016

Do \(3^n\)(n là số nguyên ) đều có chữ số tận cùng là 9 

=> S= 1 +3+\(3^3\)+....................+\(3^{100}\) có tận cung là 0

28 tháng 2 2017

22 tháng 6 2017

A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30

3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31

2A = 3A – A =  ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 )  –  ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )

2A =  3 31 - 1

A =  3 31 - 1 2

Ta có  3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243

với n ≥ 0 thì  3 4 n + 3 có chữ số tận cùng là 7.Vì  31 = 4.7 + 3 nên  3 31 có chữ số tận cùng là 7. Do đó  3 31 - 1 2  có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.

Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
$A=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{56}+3^{57}+3^{58}+3^{59})$

$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+...+3^{56}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(1+3^4+...+3^{56})$

$=40.(1+3^4+...+3^{56})\vdots 10$

Do đó chữ số tận cùng của $A$ là $0$

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

6 tháng 9 2023

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

6 tháng 9 2023

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
\(A=1+3+(3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9)+...+(3^{46}+3^{47}+3^{48}+3^{49})\)

\(=4+3^2(1+3+3^2+3^3)+3^6(1+3+3^2+3^3)+....+3^{46}(1+3+3^2+3^3)\)

\(=4+3^2.40+3^6.40+....+3^{46}.40\)

\(=10(4.3^2+4.3^6+..+4.3^{46})+4\)

Vậy $A$ có tận cùng là $4$

 

12 tháng 10 2019

Ta có : \(3A=3+3^2+3^3+...+3^{102}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2A=3^{102}-1\)

\(A=\frac{3^{102}-1}{2}\)

Ta có : 3102 - 1 = 3100 + 2 - 1

                   = 325.4 + 2 - 1

                   = 325.4 . 32 - 1

                   = ....1 . 9 - 1

                   = ...9 - 1

                   = ...8

=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)

Vậy chữ số tận cùng của A là 4

12 tháng 10 2019

Nhân A thêm 3

Lấy 3A - A được 3^102 -1

A = (3^102-1)/2

3^4k có tận cùng là 1

nên A có tận cùng là 0

4 tháng 1 2016

tick mik 2 cái lên 50 nè

4 tháng 1 2016

Ta có      3S=32+...+31998

=> 3S-S=(32+...+31998) - (1+3+32+...+31998)

=> 2S=31998 - (1+3)

Vậy S=\(\frac{3^{1998}-3}{2}\)

1 tháng 12 2021
Tận cùng là không nhé
1 tháng 12 2021
Nhầm tận cùng là 2 nhé