K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

Suy ra: CB=CD

11 tháng 1 2022

A B C E F H I M G N P Q K

Gọi P là giao của BN với EH; Q là giao của MN với HF; K là giao của MN với EF

Ta có 

\(EH\perp BC;AI\perp BC\)=> EH//AI \(\Rightarrow\frac{PE}{NA}=\frac{PH}{NI}\) (Talet) \(\Rightarrow\frac{PE}{PH}=\frac{NA}{NI}=1\Rightarrow PE=PH\)

=> BN đi qua trung điểm P của EH

Ta có

EF//BC (gt) => KF//HM \(\Rightarrow\frac{QK}{QM}=\frac{QF}{QH}=\frac{KF}{HM}\) (Talet) => KH//FM

Xét tứ giác KFMH có 

KF//HM; KH//FM => KFMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> KF=HM (Trong hình bình hành các cạnh đối bằng nhau)

\(\Rightarrow\frac{QF}{QH}=\frac{KF}{HM}=1\Rightarrow QF=QH\)

=> MN đi qua trung điểm Q của HF

17 tháng 1 2022

mik chx hiểu câu hỏi bn là j lun á

 

 

a) Ta có: \(AE=BE=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(AF=CF=\dfrac{AC}{2}\)(F là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AE=BE=AF=CF

Xét ΔABF và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAF}\) chung

AF=AE(cmt)

Do đó: ΔABF=ΔACE(c-g-c)

Suy ra: BF=CE(Hai cạnh tương ứng)

11 tháng 5 2021

Vảm ơn bạn câu sau bạn có làm đc nữa ko

 

10 tháng 11 2017

A B C M N D E

Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.

Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)

Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)

Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.

30 tháng 10 2021

m kẻ đc hình chưa ? chưa kẻ t kẻ cho ❤

30 tháng 10 2021

mày kẻ hộ tao ii. Lười qué :33

8 tháng 7 2015

a) Xét tam giác AME và tam giác BMC, có:

            góc AME = góc BMC ( đối đỉnh)

           EM = MC ( giải thiết )

           AM= MB ( M là trung điểm của AB )

\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)

\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng) 

\(\Rightarrow AE\)//\(BC\) ( đpcm)