Thu gọn:
S=1.1!+2.2!+3.3!+...+99.99!+100.100!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
Đặt A=1.1+2.2+3.3+....+100.100
=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)
=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100
=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)
Đặt B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3
=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101
=>3B=100.101.102
=>B=343400
Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050
=>A=343400-5050=338350
cho mk 1 tích nha
Ta có :
Đặt A=1.1+2.2+3.3+....+100.100
=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)
=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100
=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)
Đặt B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3
=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101
=>3B=100.101.102
=>B=343400
Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050
=>A=343400-5050=338350
Học tốt<3
Đặt A=1.1+2.2+3.3+4.4+5.5+.....+100.100
A=12+22+32+....+992+1002
2A=22+32+42+...+1002+1012
2A-A=(22+32+...+1002+1012)-(12+22+...+992+1002)
A=1012-12
A=1012-1
Đặt : S=1.1 ! + 2.2 ! + 3.3 ! + 4.4 ! + .... + 99.99 ! + 100.100 !
Theo công thức của mk ở dưới
=> S=(2!-1!)+(3!-2!)+...+(100!-99!)
=> S= 100!-1
chắc vậy mk ko chắc lắm :)
Ta có công thức : n!=(n+1-1).n!=(n+1)!-n! bạn bám vào công thức thì sẽ làm đc
1/2.2 + 1/3.3 + 1/4.4 +....+ 1/99.99 + 1/100.100
= 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/98.99 + 1/99.100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
số số hạng là:
(100.100-1.1):1+1=100(số hạng)
E=(100.100+1.1)*100:2=5060
k mình nhé m.n
E = 1 . 1 + 2 . 2 + 3 . 3 + 4 . 4 + ... + 100 . 100
E = 1 . (2 - 1) + 2 . (3 - 1) + 3 . (4 - 1) + 4 . (5 - 1) + ... + 100 . (101 - 1)
E = (1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + ... + 100 . 101) - (1 + 2 + 3 + 4 + ... + 100)
E = \(\frac{100\times101\times102}{3}-\frac{100\times101}{2}\)
E = 343400 - 5050
E = 338350
Tham khảo link : https://olm.vn/hoi-dap/detail/100101022310.html
~Study well~
#KSJ
Ta thấy 1.1! + 1! = 2.1! = 2!
2.2! + 2! = 3.2! = 3!
....
Vì vậy ta có: S + 1! + 2! + 3! + ... + 100! = (1.1! + 1!) + (2.2!+2!) + ... + (100.100! + 100!) = 2! + 3! + 4! + ... + 100! + 101!
\(\Rightarrow S+1!=101!\Rightarrow S=101!-1.\)
Ta có công thức thu gọn : \(n.n!=n!.\left(n+1-1\right)=\left(n+1\right)!-n!\)
Áp dụng với n = 1,2,...,100 sẽ được kết quả giống như cô Huyền.