K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H1. Chứng minh tam giác ABE và tam giác ACF đồng dạngXét \(\Delta ABE\) và \(\Delta ACF\) :\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )\(\widehat{A}\) chung\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)Xét tam giác AEF và tam giác...
Đọc tiếp

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H

1. Chứng minh tam giác ABE và tam giác ACF đồng dạng

Xét \(\Delta ABE\) và \(\Delta ACF\) :

\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)

Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Xét tam giác AEF và tam giác ABC:

\(\widehat{A}\) chung

\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)

3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)

Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

 

3
NV
22 tháng 4 2021

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

NV
22 tháng 4 2021

undefined

24 tháng 4 2018

Xét\(\Delta ABE\)\(\Delta ACF\)

\(\widehat{A}\)chung

\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gg\right)\)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔABE∼ΔACF(g-g)

b) Ta có: ΔABE∼ΔACF(cmt)

nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có

\(\widehat{DCA}\) chung

Do đó: ΔEBC∼ΔDAC(g-g)

19 tháng 3 2021
7 tháng 4 2017

A B C D E F

a) xét tam giác ABE và tam giác ACF có:

góc BAE=góc CAF (AD là phân giác góc BAC)

góc AEB=góc AFC=90 độ

\(\Rightarrow\Delta ABE\infty\Delta ACF\left(g.g\right)\)

xét tam giác BDE và tam giác CDF có:

góc CDF= góc BDE(đối đỉnh)

góc BED= góc CFD=90 độ

\(\Rightarrow\Delta BDE\infty\Delta CDF\left(g.g\right)\)

b) ta có: AD là phân giác góc BAC nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\left(1\right)\)

\(\Delta ABE\infty\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (2)

\(\Delta BDE\infty\Delta CDF\Rightarrow\dfrac{BD}{CD}=\dfrac{DE}{DF}\left(3\right)\)

từ (1),(2),(3) \(\Rightarrow\dfrac{AE}{AF}=\dfrac{DE}{DF}\Rightarrow AE\cdot DF=DE\cdot AF\)

3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)

Xét ΔFHE và ΔBHC có 

\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)

\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)

1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(đpcm)

a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

b: Xét tứ giác AFHE có

góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

=>góc FAH=góc FEH

=>goc BAD=góc BEF