Chứng minh :(2^1+2^2+2^3+...+2^100) chia hết cho 3 (mong moi người có thể giúp mình giải này càng nhanh càng tốt)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + 1)(a + 2)(a + 3)(a + 4) + 1
= (a2 + 4a + a + 4)(a2 + 3a + 2a + 6) + 1
= (a2 + 5a + 4)(a2 + 5a + 6) + 1 (1)
Đặt a2 + 5a + 5 = b
=> a2 + 5a + 4 = b - 1
a2 + 5a + 6 = b + 1
(1) = (b - 1)(b + 1) + 1
= b2 - 1 + 1
= b2
= (a2 + 5a + 5)2
\(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left[\left(a+1\right).\left(a+4\right)\right].\left[\left(a+2\right).\left(a+3\right)\right]+1\)
\(=\left(a^2+4a+a+4\right).\left(a^2+2a+3a+6\right)+1=\left(a^2+5a+4\right).\left(a^2+5a+6\right)+1\)
Đặt : \(a^2+5a+5=b\) thì ta có :
\(\left(b-1\right).\left(b+1\right)+1=b^2-1+1=b^2\)
thay \(a^2+5a+5\) vào b . ta được :
\(b^2=\left(a^2+5a+5\right)^2\)
VẬy : \(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left(a^2+5a+5\right)^2\)
Gọi số cần tìm là A . Theo bài ra ta có :
\(A=4q_1\)\(+3\)
\(A=17q_2\)\(+9\)
\(A=19q_3\)\(+13\left(q_1,q_2,q_3\in N\right)\)
\(\rightarrow A+25=4\left(q_1+7\right)=17I\left(q_2+2\right)=19\left(q_3+2\right)\)
\(\rightarrow A+25\)chia hết cho 4 ; 17 ; 19 mà ( 4 ; 17 ; 19 ) = 1 ( A + 25 ) chia hết cho tích ( 4 . 17 . 19 ) hay A + 25 = 1292k ( K thuộc N )
\(\rightarrow\)A = 1292k - 25 = 1292k - 1292k + 1267 = 1292 ( k - 1 ) + 1267
Vậy khi chia A cho 1292 thì dư 1267.
gọi A là số cần tìm ta có:
A = 4q1+3
A = 17q2+9
A = 19q3+13 (q1, q2, q3 ∈ N)
→ A + 25 = 4 (q1 + 7) = 17I (q2 + 2)
= 19 (q3 + 2)
⇒ A+ 25 chia hết cho 4;17;19 mà (4;17;19) =1(A+25) chia hết cho tích(4;17;19) hay A+25=1292K(k thuộc N)
⇒ A=1292K-25=1292k-1292K+1267= 1292(K-1)+1267
vậy khi chia A cho 1292 thì dư 1267
(50-1):1+1=50 số
=(50-49)+(48-47)+...+(4-3)+(2-1). Ta có 25 cặp số
=1+1+1+....+1
=1.25
=25
toán này có trong thi HSG lớp 9 bạn nhé:
nhóm nhân tử làm xuất hiện cái số chia hết cho số cần chia VD như:2a+4b=2(a+2b) mà 2 nhân với bất cứa 1 số nào cũng chia hết cho 2 nên BT chia hết cho 2
còn phần dưới hì phân tích 2 số đâu chia hết cho 1 số chẵn mà cộng thếm 1 thì chia hết cho số lẻ nên BT sai
Đặt A=2+22+...+2100
A=(2+22)+...+(299+2100)
A=2.(1+2)+...+299.(1+2)
A=2.3+...+299.3
A=3.(2+...+299)
=> A chia hết cho 3
21 + 22 + 23 + ... + 2100
= ( 21 + 22 ) + ( 23 + 24 ) + ... + ( 299 + 2100 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 299 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 299 . 3
= 3 . ( 2 + 23 + ... + 299 ) chia hết cho 3