2.a.(2.a + 2) chia hết cho 8
hãy chứng minh điều đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không vì số chia hết cho 2 là sô chẵn và số chia hết cho 5 là số lẻ hoặc chẵn nên 1 số trường hợp như 5 . 6 = 30 8 . 5 = 40 , ................ vậy 1 số trường hợp sẽ chia hết cho 2 và 5 còn 1 sô trường hợp thì ko thế chia hết cho 2 và 5
2-
Ta có:
a+5b chia hết cho 7
=>10.(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7
=>49b chia hết cho 7 (đúng)
Vì vậy 10a+b chia hết cho 7
CM điều ngược lại đúng
Ta có:
10a+b chia hết cho 7
=>5.(10a+b) chia hết cho 7
=>50a+5b chia hết cho 7
Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7
=>49a chia hết cho 7 (đúng)
Vậy điều ngược lại đúng
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
1 Ta có
10^2010=10000...0000(2010 số 0)+8
=100000...0000(2009 số 0)8
=(1+0+8)=9 mà 9 chi hết cho 9
suy ra 10^2010+8 chia hết cho 9
2.Nếu số a và số b cùng chẵn thì a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu hai số cùng lẻ suy ra a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu a chẵn ,b lẻ suy ra ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Nếu a lẻ ,b chẵn thì ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Vậy ab(a+b) chia hết cho 2
1) A = 120a + 36b
=> A = 12.10.a + 12.3.b
=> A = 12.(10a+3b)
Do 12.(10a+3b) \(⋮\)12
nên 120a+36b \(⋮\)12
2) Gọi (2a+7b) là (1)
(4a+2b) là (2)
Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)
Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3
Hay 4a+2b chia hết cho 3
3) Gọi (a+b) là (1)
(a+3b) là (2)
Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2
Hay (a+3b) chia hết cho 2
2a(2a + 2) = 2a.2(a + 1) = 4a(a + 1) mà trong 2 số nguyên liên tiếp a,a + 1 có 1 số chẵn nên a(a + 1) chia hết cho 2,có dạng 2k
=> 2a(2a + 2) = 4.2k = 8k chia hết cho 8 (đpcm)
2a * (2a + 2)
hay 2a * 2a + 2a * 2
hay 4a2 + 4a
hay 8a3 chia hết cho 8 (đpcm)