Cho tam giác ABC vuông tại A, đường cao AD
a. Chứng minh : Δ ABD đồng dạng Δ CBA, từ đó suy ra : AB2 = BC.BD
b. Vẽ BM là đường phân giác của góc BAC, BM cắt AD tại I. Chứng minh : \(\dfrac{IA}{ID}\)X\(\dfrac{MA}{MC}\)= 1
c. Vẽ AH vuông góc với MB tại H. Chứng minh: Góc CMB = Góc BDH
a: Xét ΔABD vuông tại D và ΔCBA vuông tại A có
góc B chung
=>ΔABD đồng dạng với ΔCBA
=>BA^2=BD*BC
b: IA/ID=BA/BD
MA/MC=BA/BC
=>IA/ID*MA/MC=BA^2/BD*BC=1