K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021
Mình đã làm được câu 1,2,3 rồi.Nhờ mọi người giúp câu 4 nha.

a: Xet (O) có

ΔAHB nội tiếp

AB là đường kính

Do đo: ΔAHB vuông tại H

=>AH vuông góc với BC

AB^2=BC*BH

b: ΔOAD cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOD

Xét ΔOAC và ΔODC có

OA=OD

góc AOC=góc DOC

OC chung

Do đó: ΔOAC=ΔODC

=>góc ODC=90 độ

=>CD là tiếp tuyến của (O)

18 tháng 12 2019

a, HS tự chứng minh

b, HS tự chứng minh

c, HS tự chứng minh

d, ∆MIH:∆MAB

=>  M H M B = I H A B = 2 E H 2 F B = E H F B

=> ∆MHE:∆MBF

=>  M F A ^ = M E K ^  (cùng bù với hai góc bằng nhau)

=> KMEF nội tiếp =>  M E F ^ = 90 0

a: Xét (O) có

 

ΔAMD nội tiếp

AD là đường kính

Do đó: ΔAMD vuông tại M

=>AM\(\perp\)MD

b: 

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

\(\widehat{ABH}=\widehat{ADC}\)

Do đó: ΔAHB~ΔACD

c: Ta có: AM\(\perp\)MD

AM\(\perp\)BC tại H

Do đó: BC//MD

=>BCDM là hình thang

=>\(\widehat{BMD}+\widehat{MBC}=180^0\)

mà \(\widehat{MBC}+\widehat{MDC}=180^0\)(BCDM là tứ giác nội tiếp (O))

nên \(\widehat{BMD}=\widehat{CDM}\)

Hình thang BCDM(BC//MD) có \(\widehat{BMD}=\widehat{CDM}\)

nên BCDM là hình thang cân