cho a,b,c>0.CMR
(a8+b8+c8)/(a3b3c3)>=1/a+1/b+1/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)
\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\ge\dfrac{2\sqrt{bc}}{a}.\dfrac{2\sqrt{ac}}{b}.\dfrac{2\sqrt{ab}}{c}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Đặt (x3;y3;z3)=(a;b;c)(x,y,z>0)(x3;y3;z3)=(a;b;c)(x,y,z>0)
⇒xyz=1⇒xyz=1
Ta cần chứng minh
1x3+y3+1+1y3+z3+1+1z3+x3+1≤11x3+y3+1+1y3+z3+1+1z3+x3+1≤1
Áp dụng AM-GM, ta có: x3+y3+1=(x+y)(x2−xy+y2)+xyzx3+y3+1=(x+y)(x2−xy+y2)+xyz
≥(x+y)xy+xyz=xy(x+y+z)≥(x+y)xy+xyz=xy(x+y+z)
⇒1x3+y3+1≤1xy(x+y+z)⇒1x3+y3+1≤1xy(x+y+z)
Tương tự: 1y3+z3+1≤1yz(x+y+z)1y3+z3+1≤1yz(x+y+z)
1z3+x3+1≤1zx(x+y+z)1z3+x3+1≤1zx(x+y+z)
Cộng vế theo vế, ta được
....≤1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1....≤1x+y+z(1xy+1yz+1xz)=1x+y+z.x+y+zxyz=1xyz=1
Vậy ta có đpcm
Đẳng thức xảy ra khi a=b=c=1