Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0
\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)
\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)
Áp dụng bđt (x+y+z)^2 >= xy+yz+zx với x,y,z > 0 ta có:
(ab+bc+ca)^2 >= 3.(ab.bc+bc.ca+ca.ab) = 3abc.(a+b+c) = 3abc ( vì a+b+c = 1 )
=> a^2+b^2+c^2+2\(\sqrt{3abc}\)< = a^2+b^2+c^2+2\(\sqrt{\left(ab+bc+ca\right)^2}\)= a^2+b^2+c^2+2(ab+bc+ca) = (a+b+c)^2 = 1
Dấu "=" xảy ra <=> a=b=c=1/3
Vậy GTNN của a^2+b^2+c^2+2\(\sqrt{3abc}\)= 1 <=> a=b=c=1/3
Tk mk nha
\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)(1)
Vì \(a;b;c>0\Rightarrow a+b+c>0\) (2)
Do đó ta cần phải CM : \(a^2+b^2+c^2-ab-ac-bc\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)Luôn đúng (3)
Từ (2) ; (3) => BĐT (1) đúng
\(\Rightarrow a^3+b^3+c^3\ge3abc\) đúng (ĐPCM)
Ta có:
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b+c}{ab+bc+ca}=\frac{1}{abc}\)
Ta lại có:
\(\frac{a+b+c}{ab+bc+ca}\ge\frac{3\left(a+b+c\right)}{\left(a+b+c\right)^2}=\frac{3}{a+b+c}\)
Từ đó ta có:
\(\frac{1}{abc}\ge\frac{3}{a+b+c}\)
\(\Leftrightarrow a+b+c\ge3abc\left(DPCM\right)\)
bài 1
ab+bc+ca=0
=>ab+bc=-ca
ta có (a+b)(b+c)(c+a)/abc
=> (ab+ac+bc+b2)(c+a)/abc
=> (0+b2)(c+a)/abc
=>b2c+b2a/abc
=>b(ab+bc)/abc
=>b(-ac)/abc
=>-abc/abc=-1