K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!

4 tháng 9 2016

Bài nào,trang bao nhiêu để mk xem rồi mk trả lời cho.

4 tháng 9 2016

Bài 1: * Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

21 tháng 6 2017

O A B C M D

a, Ta có:

\(\widehat{AOD}+\widehat{COD}=90^o;\widehat{BOC}+\widehat{COD}=90^o\)

\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)

b, Ta có:

\(\widehat{MOD}=\widehat{MOC}\) (do OM là phân giác)

\(\widehat{AOD}=\widehat{BOC}\left(cmt\right)\)

\(\Rightarrow\widehat{AOD}+\widehat{MOD}=\widehat{BOC}+\widehat{MOC}\)

\(\Rightarrow\widehat{AOM}=\widehat{BOM}\)

\(\Rightarrow OM\) là phân giác của \(\widehat{AOB}\)

Chúc bạn học tốt!!!

21 tháng 6 2017

Góc AOB tù hay bẹt hay nhọn vậy bn???:-/

8 tháng 3 2019

A) Vì I là đường trung trực của BC

\(\Rightarrow IB=IC\)

I THUỘC ĐƯỜNG TRUNG TRỰC CỦA AD

\(\Rightarrow AI=ID\Rightarrow\Delta IAD\)CÂN\(\Rightarrow\widehat{IAC}\)=\(I\widehat{DC}\)

XÉT TAM GIÁC ABI VÀ TAM GIÁC ICD CÓ:

    AB=CD

IB=IC

IA=ID

VẬY TAM GIÁC ABI = TAM GIÁC ICD

\(\widehat{BAI=CDI}\)

\(\widehat{BAI}\)=\(\widehat{IAC}\)

AI LÀ PG BAC

C)ĐANG NGHĨ BN NHÁ

HC TỐT

8 tháng 3 2019

co hinh khong

26 tháng 7 2019

Pạn tự vẽ hình nha!!!

Bài Làm

a, Ta có: \(\widehat{BOC}\) kề bù \(\widehat{AOB}\) (gt)

\(\Rightarrow\) OC và OA là hai tia đối nhau (1)

Lại có: \(\widehat{AOD}\) kề bù \(\widehat{AOB}\) (gt)

\(\Rightarrow\) OB và OD là hai tia đối nhau (2)

Từ (1) và (2) \(\Rightarrow\widehat{BOC}\)\(\widehat{AOD}\) là hai góc đối đỉnh (đpcm)

b, Gọi Om, On lần lượt là hai tia phân giác của \(\widehat{BOC}\)\(\widehat{AOD}\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{BOm}=\widehat{mOC}=\widehat{\frac{BOC}{2}}\\\widehat{AOn}=\widehat{nOD}=\frac{\widehat{AOD}}{2}\end{matrix}\right.\)

\(\widehat{BOC}=\widehat{AOD}\) ( hai góc đối đỉnh )

\(\Rightarrow\widehat{BOm}=\widehat{mOC}=\widehat{AOn}=\widehat{nOD}\)

Ta có: \(\widehat{AOB}+\widehat{AOD}=180^0\) ( hai góc kề bù )

\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{nOD}=180^0\)

\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{BOm}=180^0\)

\(\Rightarrow\widehat{mOn}=180^0\)

\(\Rightarrow\) Om và On là hai tia đối nhau (đpcm)

Chúc pạn hok tốt!!!

27 tháng 7 2019

thanks ban nha