cho 4 tam giac aob boc cod doabang nhau biet oa=ac ob=ad chung to rang ab=bc=cd=da.acvuong goc voi bdbtia ac la tia phan giac cua bad
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Bài 1: * Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
a, Ta có:
\(\widehat{AOD}+\widehat{COD}=90^o;\widehat{BOC}+\widehat{COD}=90^o\)
\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)
b, Ta có:
\(\widehat{MOD}=\widehat{MOC}\) (do OM là phân giác)
mà \(\widehat{AOD}=\widehat{BOC}\left(cmt\right)\)
\(\Rightarrow\widehat{AOD}+\widehat{MOD}=\widehat{BOC}+\widehat{MOC}\)
\(\Rightarrow\widehat{AOM}=\widehat{BOM}\)
\(\Rightarrow OM\) là phân giác của \(\widehat{AOB}\)
Chúc bạn học tốt!!!
A) Vì I là đường trung trực của BC
\(\Rightarrow IB=IC\)
I THUỘC ĐƯỜNG TRUNG TRỰC CỦA AD
\(\Rightarrow AI=ID\Rightarrow\Delta IAD\)CÂN\(\Rightarrow\widehat{IAC}\)=\(I\widehat{DC}\)
XÉT TAM GIÁC ABI VÀ TAM GIÁC ICD CÓ:
AB=CD
IB=IC
IA=ID
VẬY TAM GIÁC ABI = TAM GIÁC ICD
\(\widehat{BAI=CDI}\)
\(\widehat{BAI}\)=\(\widehat{IAC}\)
AI LÀ PG BAC
C)ĐANG NGHĨ BN NHÁ
HC TỐT
Pạn tự vẽ hình nha!!!
Bài Làm
a, Ta có: \(\widehat{BOC}\) kề bù \(\widehat{AOB}\) (gt)
\(\Rightarrow\) OC và OA là hai tia đối nhau (1)
Lại có: \(\widehat{AOD}\) kề bù \(\widehat{AOB}\) (gt)
\(\Rightarrow\) OB và OD là hai tia đối nhau (2)
Từ (1) và (2) \(\Rightarrow\widehat{BOC}\) và \(\widehat{AOD}\) là hai góc đối đỉnh (đpcm)
b, Gọi Om, On lần lượt là hai tia phân giác của \(\widehat{BOC}\) và \(\widehat{AOD}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BOm}=\widehat{mOC}=\widehat{\frac{BOC}{2}}\\\widehat{AOn}=\widehat{nOD}=\frac{\widehat{AOD}}{2}\end{matrix}\right.\)
Mà \(\widehat{BOC}=\widehat{AOD}\) ( hai góc đối đỉnh )
\(\Rightarrow\widehat{BOm}=\widehat{mOC}=\widehat{AOn}=\widehat{nOD}\)
Ta có: \(\widehat{AOB}+\widehat{AOD}=180^0\) ( hai góc kề bù )
\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{nOD}=180^0\)
\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{BOm}=180^0\)
\(\Rightarrow\widehat{mOn}=180^0\)
\(\Rightarrow\) Om và On là hai tia đối nhau (đpcm)
Chúc pạn hok tốt!!!