cho tam giác ABC vuông tại A , M là 1 điiểm thuộc cạnh AC ( M # A , C ). Đường tròn đường kính Mc cắt BC tại N và cắt tia BM tại I . CMR
a) ABNM và ABCI là các tứ giác nội tiếp .
b) NM là tia phân giác góc ANI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
gócHBK chung
=>ΔBHK=ΔBAC
=>BK=BC
c: ΔBKC cân tại B
mà BM là trung tuyến
nên BM là phân giác
=>B,D,M thẳng hàng
A B C I K M 1 2 H
Kẻ \(HI\perp AB,HK\perp AC\)
Ta có : \(\widehat{HMK}=\widehat{B}\) ( cùng phụ với \(\widehat{C}\) )
Xét \(\Delta HKM\) và \(\Delta HIB\)có :
\(\widehat{K}=\widehat{I}=90^o\)
\(HM=HB\left(gt\right)\)
\(\widehat{HMK}=\widehat{B}\left(cmt\right)\)
Suy ra \(\Delta HKM=\Delta HIB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow HK=HI\) ( 2 cạnh tương ứng )
Xét \(\Delta HIA\) và \(\Delta HKA\)có :
\(\widehat{I}=\widehat{K}=90^o\)
HA : cạnh chung
HI = HK ( cmt)
Suy ra \(\Delta HIA=\Delta HKA\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{A}_1=\widehat{A}_2\)
Do đó AH là tia phân giác của góc A
Chúc bạn học tốt !!!