Tìm cá số nguyên dương x,y biết:
\(2^x\)\(-\) \(2^y\)=\(224\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}\ge0\left(\forall x\right)\\\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}=0\\\left(y+\frac{3}{7}\right)^{468}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{7}\end{cases}}\)
b) \(\hept{\begin{cases}\left(x+0,7\right)^{84}\ge0\left(\forall x\right)\\\left(y-6,3\right)^{262}\ge0\left(\forall y\right)\end{cases}\Rightarrow}\left(x+0,7\right)^{84}+\left(y-6,3\right)^{262}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x+0,7\right)^{84}=0\\\left(y-6,3\right)^{262}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,7\\y=6,3\end{cases}}\)
c) \(\hept{\begin{cases}\left(x-5\right)^{88}\ge0\left(\forall x\right)\\\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\end{cases}\Rightarrow}\left(x-5\right)^{88}+\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-5\right)^{88}=0\\\left(x+y+3\right)^{496}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)
Bài 2:
Theo giả thiết ta có thể suy ra: \(x>y\)
Ta có: \(2^x-2^y=224\)
\(\Leftrightarrow2^y\left(2^{x-y}-1\right)=224=32.7=2^5.7\)
Mà \(2^{x-y}-1\) luôn lẻ với mọi x,y nguyên
=> \(\hept{\begin{cases}2^{x-y}-1=7\\2^y=2^5\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{x-y}=8=2^3\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\)
ĐK : (x > y > 0)
Đặt x = y + k
=> 2x - 2y = 224
<=> 2y + k - 2y = 224
<=> 2y(2k - 1) = 224
<=> 2y(2k - 1) : 32 = 224:32
<=> 2y - 5.(2k - 1) = 7
Ta có 7 = 1.7
Lập bảng xét các trường hợp
2y- 5 | 1 | 7 |
2k - 1 | 7 | 1 |
y | 5 | (loại) |
k | 3 | (loại) |
y = 5 ; k = 3 => y = 5;x = 8
Vậy x = 8 ; y = 5
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
\(\Rightarrow\frac{x-3}{2}=\frac{10-x}{y}\)
\(\Rightarrow\left(x-3\right)y=\left(10-x\right)2\)
\(\Rightarrow xy-3y-20+2x=0\)
\(\Rightarrow x\left(y+2\right)-3\left(y+2\right)-14=0\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)-14=0\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)=14\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)\inƯ\left(14\right)\)
Sau đó bạn lập bảng là được .
- 2^y + 2^x - 224 = 0
- ( 2^y - 2^x + 224 ) = 0
2^y - 2^x + 224 = 0
Tìm cá số nguyên dương x,y biết:
\(2^x\)\(-\) \(2^y\)= \(224\)
=> \(2^x-2^y=2^{10}\)
=> \(2^y=2^{10}\)
=> y = 10
=> \(2^x=2^{10}+2^{10}\)
=> \(2^x=2^{11}\)
=> x = 11
Vậy x = 11; y = 10