23 x 99 + 23 x 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 1 + 3 + 5 + ....+ 97 + 99 ) - 2 x X = 500
Áp dụng công thức tính dãy số ta có :
\(1+3+5+...+99=\frac{\left[\left(99-1\right):2+1\right].\left(99+1\right)}{2}=50.100:2=50.50=2500\)
=> 2500 - 2X = 500
=> 2X = 2500 - 500 = 2000
=> X = 2000 : 2 = 1000
a) Ta có : 1 + 3 + 5 + ..... + 97 + 99
Số số hạng trên là :
( 99 - 1 ) : 2 + 1 = 50 số hạng :
Tổng trên là :
( 99 - 1 ) x 50 : 2 = 2450
Thế vào câu a ta được :
2450 - 2x = 500
=> 2x = 1950
=> x = 975
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}\)
\(\Leftrightarrow\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}=0\)
\(\Leftrightarrow\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\right)=0\)
\(\Leftrightarrow x-23=0\left(vì\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\ne0\right)\)
\(\Leftrightarrow x=23\)
vậy................
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow300-x=0\left(vì\frac{1}{99}+\frac{1}{97}+\frac{1}{95}>0\right)\)
\(\Leftrightarrow x=300\)
vậy..........
\(x+\left(x+1\right)+\left(x+12\right)+\left(x+23\right)+\left(x+77\right)+\left(x+88\right)+\left(x+99\right)=370\)
\(\Leftrightarrow x+x+1+x+12+x+23+x+77+x+88+x+99=370\)
\(\Leftrightarrow7x+\left(1+12+23+77+88+99\right)=370\)
\(\Leftrightarrow7x+\left(1+99\right)+\left(12+88\right)+\left(23+77\right)=370\)
\(\Leftrightarrow7x+100+100+100=370\)
\(\Leftrightarrow7x+300=370\)
\(\Leftrightarrow7x=70\)
\(\Leftrightarrow x=10\)
Vậy \(x=10\)
\(x+x+x+x+x+x+x+1+99+12+88+23+77=370\)
\(7x+100+100+100=370\)
\(7x+300=370\)
\(7x=70\)
\(x=10\)
mk chỉ giúp câu a thôi nhé:
a)2020.2019+2020.(-2019)
=2020.[2019+(-2019)]
=2020.0
=0
\(x+23=24\)
\(x=24-23\)
\(x=1\)
\(x+99=199\)
\(x=199-99\)
\(x=100\)
a)
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)
$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$
Do đó $x-23=0\Rightarrow x=23$
b)
PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$
$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$
$\Rightarrow x+100=0\Rightarrow x=-100$
c)
PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$
Do đó $x+2005=0\Rightarrow x=-2005$
d)
PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)
\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)
\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$
Do đó $300-x=0\Rightarrow x=300$
\(23.99+23.1\)
\(=23.\left(99+1\right)\)
\(=23.100\)
\(=2300\)
chuc bn hoc giôi!
nhae
23 x 99 + 23 x 1 = 23 x ( 99 + 1 )
= 23 x 100
= 2300