Giúp mình với nha!
Tìm cặp số nguyên (x,y) thỏa mãn:
x^2-4xy+5y^2=2(x-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$
$\Leftrightarrow (x+2y)^2+y^2=2023$
Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$
Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$
$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$
Mà $2023\equiv 3\pmod 4$
Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;-3;1\right\}\)
Thế vào pt ban đầu tìm x nguyên tương ứng
\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)
Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Thay y=0 vào pt (1) ta không tìm được x nguyên
Thay y=-2 vào pt (1) ta không tìm được x nguyên
Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)
Thay y=-3 vào pt (1) tìm được \(x=-6\)
Thay y=1 vào pt (1) tìm được \(x=2\)
Lời giải:
PT $\Leftrightarrow x^2-4xy+(5y^2+2y-3)=0$
Dấu "=" tồn tại nghĩa là pt luôn có nghiệm.
$\Leftrightarrow \Delta'=(2y)^2-(5y^2+2y-3)\geq 0$
$\Leftrightarrow -y^2-2y+3\geq 0$
$\Leftrihgtarrow y^2+2y-3\leq 0$
$\Leftrightarrow (y-1)(y+3)\leq 0$
$\Leftrightarrow -3\leq y\leq 1$
$\Rightarrow y_{\max}=1$
.Ta có:
x4−5y=32x4−5y=32
→x−20y=6→x−20y=6
→x−6=20y→x−6=20y
→(x−6)y=20→(x−6)y=20
Mà x,y∈N→(x−6,y)x,y∈N→(x−6,y) là cặp ước của 2020
Mặt khác y∈N→y≥0y∈N→y≥0
→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}
→(x,y)∈{(26,1),(16,2),(11,4),(10,5),(8,10),(7,20)}
t thấy x=2 và y=7 thỏa pt trên
cần chứng minh các số nguyên tố khác 2 và 7 ko thỏa đk ta có các số nguyên tố phần lớn là số lẻ (trừ số 2) nên khi ta bình phương hoặc lập phương nó lên, nó là tích hai hoặc ba số lẻ có kết quả là các số lẻ và đều có dạng x=2n+1, y=2k+1(nN)(k Z) khi đó vế trái sẽ là 2n+1+49=2k+1
<=>2n+50=2k+1
mà vế trái chia hết cho 2 còn vế phải thì ko
vậy ngoài số 2 và 7 ra thì ko có số ngto nào thỏa điều kiện
vậy x=2 và y=7
k mk nha
\(x^2-4xy+5y^2=2\left(x-y\right)\)
\(\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)
\(\left(x-2y-1\right)^2+\left(y-1\right)^2=1^2+1^2\)
\(\left(x-2y-1\right)^2=1\)
\(\left(y-1\right)^2=1\)
\(y-\left(1^2-1\right)\)
\(y=2\left|x=1\right|\)
Hmmm....không chắc há cậu mik làm kiểu cô giao nên không có 4 đâu hem :)))) ???
:)