K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi độ dài cạnh nhỏ nhất là x

=>ĐÓ là cạnh góc vuông nhỏ

Độ dài cạnh góc vuông lớn là 2,4x

Theo đề, ta có: x^2+(2,4x)^2=13^2=169

=>x=5

Theo đề, ta có:

\(5^2+\left(a-1\right)^2=a^2\)

\(\Leftrightarrow a^2=a^2-2a+1+25\)

=>a=13

25 tháng 8 2018

Đáp án D

NV
30 tháng 4 2021

Gọi độ dài cạnh góc vuông thứ 2 là x>0 (cm)

\(\Rightarrow\) Độ dài cạnh huyền là \(x+2\) (cm)

Theo định lý Pitago ta có:

\(4^2+x^2=\left(x+2\right)^2\)

\(\Leftrightarrow16+x^2=x^2+4x+4\)

\(\Leftrightarrow4x=12\Rightarrow x=3\)

Vậy độ dài cạnh huyền là \(3+2=5\left(cm\right)\)

21 tháng 7 2018

Đặt độ dài 2 cạnh góc vuông của tam giác đó là a và b; độ dài cạnh huyền là c (a,b,c > 0)

Diện tích của tam giác đó là \(\frac{ab}{2}=14\)(cm2\(\Rightarrow ab=28\Leftrightarrow2ab=56\)(1)

Áp dụng ĐL Pytago ta có: \(a^2+b^2=c^2=13^2=169\)(2)

(1) + (2) \(\Rightarrow a^2+2ab+b^2=56+169=225\Leftrightarrow\left(a+b\right)^2=225\)

\(\Leftrightarrow a+b=\sqrt{225}=15\)(cm). Vậy ...

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

Gọi độ dài cạnh góc vuông còn lại là x

=>ĐỘ dài cạnh huyền là x+3

THeo đề, ta có: x^2+25=(x+3)^2

=>x^2+6x+9=x^2+25

=>6x=16

=>x=8/3

=>\(S=\dfrac{8}{3}\cdot3\cdot\dfrac{1}{2}=4\left(cm^2\right)\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{4}{5}\)

\(\Leftrightarrow AC=\dfrac{5\cdot AB}{4}=\dfrac{5\cdot6}{4}=7.5\left(cm\right)\)

Xét ΔABC vuông tại A có

\(AB^2+AC^2=BC^2\)

hay \(BC=\dfrac{3\sqrt{41}}{2}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{24\sqrt{41}}{41}\left(cm\right)\\CH=\dfrac{75\sqrt{41}}{82}\left(cm\right)\end{matrix}\right.\)

10 tháng 9 2018

Đáp án A