K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có

BA=DC

góc HAB=góc ICD

=>ΔHBA=ΔIDC

=>AH=IC

b: Xét tứ giác BHDI có

BH//DI

BH=DI

=>BHDI là hình bình hành

c; S CAB=AB*CM/2

S DAC=1/2*CN*AD

mà ΔCAB=ΔDAC

nên AB*CM=CN*AD

Xét ΔAHB vuông tại H và ΔAMC vuông tại M có

góc HAB chung

=>ΔAHB đồng dạng với ΔAMC

=>AH/AM=AB/AC

=>AB*AM=AH*AC

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>CB/AC=HC/NA

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

a: S CAB=1/2*CM*AB

S CAD=1/2*CN*AD

mà ΔCAB=ΔCAD

nên CM*AB=CN*AD

b: Xét ΔAID vuông tại I và ΔANC vuông tại N có

góc IAD chung

=>ΔAID đồng dạng với ΔANC

=>AI/AN=AD/AC

=>AI*AC=AN*AD

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>HC/NA=CB/AC

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

22 tháng 2 2018

a) Xét tam giác ABH và tam giác CID có :

AB = CD ( gt )

\(\widehat{AHB}=\widehat{CID}=90^0\)

\(\widehat{BAH}=\widehat{ICD}\)

\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)

\(\Rightarrow\)\(AH=CI\)

c) \(CM\perp AB\Rightarrow CM\perp CD\)

\(CN\perp AD\Rightarrow CN\perp BC\)

Xét tam giác BCM và tam giác CDN có :

\(\widehat{BMC}=\widehat{CND}\)

\(\widehat{MCB}=\widehat{DCN}\)

Suy ra tam giác BCM = tam giác CDN

\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)

mà BC = AD và DC = AB

Suy ra AB.CM = CN.AD

a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có

góc B=góc D

=>ΔBMC đồng dạng vớiΔDNC

b: Bạn ghi lại đề đi bạn

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//PC và MN=PC

=>NCPM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MP

hay góc BMP=90 độ

a: Xét tứ giác ADHB có 

\(\widehat{DAB}=\widehat{ADH}=\widehat{BHD}=90^0\)

Do đó: ADHB là hình chữ nhật

mà AB=AD

nên ADHB là hình vuông

3 tháng 11 2021

Ko phải câu trả lời tao cần tao sẽ ko ném nón vàng cho mày đâu:o