K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAHB vuông tại H và ΔAMC vuông tại M có

góc HAB chung

=>ΔAHB đồng dạng với ΔAMC

=>AH/AM=AB/AC

=>AB*AM=AH*AC

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>CB/AC=HC/NA

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có

BA=DC

góc HAB=góc ICD

=>ΔHBA=ΔIDC

=>AH=IC

b: Xét tứ giác BHDI có

BH//DI

BH=DI

=>BHDI là hình bình hành

c; S CAB=AB*CM/2

S DAC=1/2*CN*AD

mà ΔCAB=ΔDAC

nên AB*CM=CN*AD

a: S CAB=1/2*CM*AB

S CAD=1/2*CN*AD

mà ΔCAB=ΔCAD

nên CM*AB=CN*AD

b: Xét ΔAID vuông tại I và ΔANC vuông tại N có

góc IAD chung

=>ΔAID đồng dạng với ΔANC

=>AI/AN=AD/AC

=>AI*AC=AN*AD

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>HC/NA=CB/AC

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

22 tháng 2 2018

a) Xét tam giác ABH và tam giác CID có :

AB = CD ( gt )

\(\widehat{AHB}=\widehat{CID}=90^0\)

\(\widehat{BAH}=\widehat{ICD}\)

\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)

\(\Rightarrow\)\(AH=CI\)

c) \(CM\perp AB\Rightarrow CM\perp CD\)

\(CN\perp AD\Rightarrow CN\perp BC\)

Xét tam giác BCM và tam giác CDN có :

\(\widehat{BMC}=\widehat{CND}\)

\(\widehat{MCB}=\widehat{DCN}\)

Suy ra tam giác BCM = tam giác CDN

\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)

mà BC = AD và DC = AB

Suy ra AB.CM = CN.AD

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

a: Xét ΔIDC vuông tại I và ΔKDB vuông tại K có

góc IDC chung

=>ΔIDC đồng dạng với ΔKDB

b: Xét ΔBHA vuông tại H và ΔBKC vuông tại K co

góc BAH=góc BCK

=>ΔBHA đồng dạng với ΔBKC

=>BH/BK=BA/BC

=>BK*BA=BH*BC