cho phương trình x^2 - 2mx - 4m -4 =0 cto phương trình luôn có 2 nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có hai nghiệm pb <=>\(\Delta>0\)<=> \(4m^2-16m+16>0\) <=>\(4\left(m-2\right)^2>0\left(lđ\right)\)
=> Pt luôn có hai nghiệm pb
Do \(x_1\) là một nghiệm của pt => \(x_1^2-2mx_1+4m-4=0\) <=> \(x_1^2=2mx_1-4m+4\)
Có \(x_1^2+2mx_2-8m+5=0\)
\(\Leftrightarrow2mx_1+2mx_2-4m+4-8m+5=0\)
\(\Leftrightarrow2m\left(x_1+x_2\right)-12m+9=0\)
\(\Leftrightarrow2m.2m-12m+9=0\)
\(\Leftrightarrow\left(2m-3\right)^2=0\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
Vậy...
\(\Delta'=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Rightarrow m\ne2\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)
Ta có: \(x_1^2+2mx_2-8m+5=0\Rightarrow x_1^2+\left(x_1+x_2\right)x_2-8m+5=0\)
\(\Rightarrow x_1^2+x_2^2+x_1x_2-8m+5=0\Rightarrow\left(x_1+x_2\right)^2-x_1x_2-8m+5=0\)
\(\Rightarrow4m^2-4m+4-8m+5=0\Rightarrow4m^2-12m+9=0\)
\(\Rightarrow\left(2m-3\right)^2=0\Rightarrow m=\dfrac{3}{2}\)
a) Thay m=1 vào phương trình ta được:
x2+2.1.x-6.1-9=0
<=> x2+2x-6-9=0
<=> x2+2x-15=0
<=> x2+5x-3x-15=0
<=> x(x+5)-3(x+5)=0
<=> (x-3)(x+5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
b) Thay x=2 vào phương trình ta được:
22+2.2.m-6m-9=0
<=> 4+4m-6m-9=0
<=> -2x-5=0
<=> -2x=5
<=> \(x=\frac{-5}{2}\)
Ta có: \(\Delta'=2m^2+4>0\forall m\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)
Mặt khác: \(x_1^2+x_2^2=20\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy ...
Đặt \(x^2=t\ge0\) pt trở thành:
\(t^2-2mt+2m-1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=m^2-\left(2m-1\right)>0\\t_1+t_2=2m>0\\t_1t_2=2m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>0\\m>\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m>\dfrac{1}{2}\end{matrix}\right.\)
Có : △ = ( -2m )2 - 4.1.( -4m - 4 )
= 4m2 + 16m + 16
= ( 2m )2 + 2.2m.4 + 42
= ( 2m + 4 )2 > 0
-> △ > 0 => Phương trình luôn có 2 nghiệm phân biệt