chứng minh rằng nếu ( a2+ab+b2) chia hết cho 10 thì ( a3-b3) chia hết cho 1000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Bài này lớp 6 mà bạn
Đặt c1=a1-b1, ... , c5=a5-b5.
Có c1+ c2 + ...+ c5
= (a1-b1)+(a2-b2)+...+(a5-b5)
= (a1+a2+...+a5)-(b1+b2+...+b5)
=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)
=> Trong 5 số c1,...,c5 có một số chẵn vì từ c1 đến c5 có 5 số
=> Trong các số a1-b1,...,a2-b2 có một số chẵn
Vậy ... (đpcm)
\(P=a^7b^3-a^3b^7\)
\(P=a^3b^3\left(a^4-b^4\right)\)
\(P=a^3b^3\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
Ta sẽ chứng minh \(P\) chia hết cho 5 và cho 6.
a) CM \(5|P\). Kí hiệu \(\left(a;b\right)\) là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu \(a\equiv b\left(mod5\right)\) cũng coi như hoàn tất. \(a+b\equiv0\left(mod5\right)\) cũng như thế.
Do đó ta loại đi được các trường hợp \(\left(0;0\right),\left(1;1\right),\left(2;2\right),\left(3;3\right),\left(4;4\right)\) và \(\left(1;4\right),\left(2;3\right),\left(3;2\right),\left(4;1\right)\) và \(\left(0;1\right),\left(0;2\right),\left(0;3\right),\left(0;4\right),\left(1;0\right),\left(2;0\right),\left(3;0\right),\left(4;0\right)\)
Ta chỉ còn lại 8 trường hợp là \(\left(1;2\right),\left(1;3\right),\left(2;4\right),\left(3;4\right)\) và các hoán vị. Nếu \(\left(a;b\right)\equiv\left(1;2\right)\left(mod5\right)\) thì \(a^2+b^2=\left(5k+1\right)^2+\left(5l+2\right)^2=25k^2+10k+1+25l^2+20l+4=5P+5⋮5\)
Các trường hợp còn lại xét tương tự \(\Rightarrow5|P\).
b) CM \(6|P\). Ta thấy \(a^3b^3\left(a-b\right)\left(a+b\right)\) luôn là số chẵn (nếu \(a\equiv b\left(mod2\right)\) thì \(2|a-b\), còn nếu \(a\ne b\left(mod2\right)\) thì \(2|a^3b^3\).
Đồng thời, cũng dễ thấy \(3|P\) vì nếu \(a\) hay \(b\) chia hết cho 3 thì coi như xong. Nếu \(a\equiv b\left(mod3\right)\) cũng xong. Còn nếu \(a+b\equiv0\left(mod3\right)\) thì cũng hoàn tất.
Suy ra \(6|P\)
Từ đó suy ra \(30|P\)
P=a7b3−a3b7
�=�3�3(�4−�4)P=a3b3(a4−b4)
�=�3�3(�−�)(�+�)(�2+�2)P=a3b3(a−b)(a+b)(a2+b2)
Ta sẽ chứng minh �P chia hết cho 5 và cho 6.
a) CM 5∣�5∣P. Kí hiệu (�;�)(a;b) là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu �≡�(���5)a≡b(mod5) cũng coi như hoàn tất. �+�≡0(���5)a+b≡0(mod5) cũng như thế.
Do đó ta loại đi được các trường hợp (0;0),(1;1),(2;2),(3;3),(4;4)(0;0),(1;1),(2;2),(3;3),(4;4) và (1;4),(2;3),(3;2),(4;1)(1;4),(2;3),(3;2),(4;1) và (0;1),(0;2),(0;3),(0;4),(1;0),(2;0),(3;0),(4;0)(0;1),(0;2),(0;3),(0;4),(1;0),(2;0),(3;0),(4;0)
Ta chỉ còn lại 8 trường hợp là (1;2),(1;3),(2;4),(3;4)(1;2),(1;3),(2;4),(3;4) và các hoán vị. Nếu (�;�)≡(1;2)(���5)(a;b)≡(1;2)(mod5) thì �2+�2=(5�+1)2+(5�+2)2=25�2+10�+1+25�2+20�+4=5�+5⋮5a2+b2=(5k+1)2+(5l+2)2=25k2+10k+1+25l2+20l+4=5P+5⋮5
Các trường hợp còn lại xét tương tự ⇒5∣�⇒5∣P.
b) CM 6∣�6∣P. Ta thấy �3�3(�−�)(�+�)a3b3(a−b)(a+b) luôn là số chẵn (nếu �≡�(���2)a≡b(mod2) thì 2∣�−�2∣a−b, còn nếu �≠�(���2)a=b(mod2) thì 2∣�3�32∣a3b3.
Đồng thời, cũng dễ thấy 3∣�3∣P vì nếu �a hay �b chia hết cho 3 thì coi như xong. Nếu �≡�(���3)a≡b(mod3) cũng xong. Còn nếu �+�≡0(���3)a+b≡0(mod3) thì cũng hoàn tất.
Suy ra 6∣�6∣P
Từ đó suy ra 30∣�30∣P
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12